12TH PHYSICS MCCQS ALL CHAPTERS

www.educatedzone.com

F.Sc. Physics (2nd Year) Multiple Choice Questions

- Chapter # 12: Electrostatics
- Chapter # 13: Current Electricity
- Chapter # 14: Electromagnetism
- Chapter # 15: Electromagnetic Induction
- Chapter # 16: Alternating Current
- Chapter # 17: Physics of Solids
- Chapter # 18: Electronics
- Chapter # 19: Dawn of Modern Physics
- Chapter # 20: Atomic Spectra
- Chapter # 21: Nuclear Physics

CHAPTER # 12: ELECTROSTATICS

- 1. Coulomb's law is only applicable for
 - a) Big charges
 - b) Small charges
 - •c) Point charges
 - d) Any charges
- 2. The force exerted by two charged bodies on one another, obeys Coulomb's law provided that
 - a) The charges are not too small
 - b) The charges are in vacuum
 - c) The charges are not too large
 - d) The linear dimension of charges is much smaller than distance between them
- **3.** The constant K in Coulomb's Law depends upon
 - a) Nature of medium
 - b) System of units
 - c) Intensity of charge
 - **•** d) Both a & b
- 4. A unit if elelctric charge is:
 - a) Volt
 - b) Henry
 - c) Coulomb
 - d) Weber
- 5. Presence of dielectric always:
 - a) Increases the electrostatic force
 - b) Decreases the electrostatic force
 - c) Does not effect the electrostatic force
 - d) Doubles the electrostatic force
- 6. The S.I unit of permitivity is:
 - a) $\frac{Nm^2}{C^2}$

b)
$$\frac{U}{Nm^2}$$

c)
$$Nm/C^2$$

d)
$$Nm^2/C$$

- 7. The lines which provide information about the electric force exerted on charged particles are:
 - a) Magnetic field lines
 - b) Electric field lines
 - c) Tangent lines
 - d) Curved lines

- **8.** The electric field created by positive charge is:
 - a) Radially outward
 - b) Zero
 - c) Circular
 - d) Radially inward
- **9.** The value of relative permitivity for all the dielectrics is always:
 - a) Less than unity
 - **b**) Greater than unity
 - c) Equal to unity
 - d) Zero
- **10.** Photo-copier and inkjet printers are the applications of:
 - a) Electronics
 - b) Magnetism
 - e) Electrostatics
 - d) Thermodynamics
- **11.** Selenium is a conductor material when exposed to _____
 - •a) Light
 - b) Dark
 - c) Mono chromatic light
 - d) None of these
- **12.** Selenium is an
 - a) Insulator
 - b) Conductor
 - c) Semiconductor
 - d) Photoconductor
- **13.** In an inkjet printer, the charged ink drops are diverted by the deflection plates
 - a) Towards the charging electrodes
 - b) Towards the gutter
 - c) Towards a blank paper on which the print is to be taken
 - d) In inkjet printer ink cannot be charged
- **14.** The electric field produced due to negative charge is always:
 - a) Radially outward
 - b) Radially inward
 - c) Circular
 - d) Zero

- **15.** The force experience by a unit positive charge placed at a point in an electric field is called:
 - a) Coulomb's force
 - b) Faraday's force
 - c) Lorentz's force
 - d) Electric field intensity
- **16.** Of the following quantities, the one that is vector in character is an
 - a) Electric Charge
 - b) Electric Field Intensity
 - c) Electric Energy
 - d) Electric Potential Difference
- 17. Electric field intensity is also known as
 - a) Electric potential
 - b) Electric flux
 - c) Potential gradient
 - d) None
- 18. Potential gradient is defined as
 - a) $\frac{\Delta E}{\Delta V}$
 - b) $-\frac{\Delta E}{\Delta E}$
 - $\Delta r = \frac{\Delta V}{\Delta V}$
 - c) $\frac{\Delta r}{\Delta V}$
 - d) $-\frac{\Delta V}{\Delta r}$
- **19.** The SI unit of E are:
 - a) (newton/meter)
 - •b) (newton/coulomb)
 - c) (newton/ampere)
 - d) (newton \times meter)
- **20.** The electric intensity is expressed in unit of N/C or
 - a) Volts
 - b) Walt
 - c) Joules
 - **d**) V/m
- **21.** The unit Vm^{-1} is equivalent to:
 - a) *NC*⁻¹
 - b) *N C*
 - c) *NC* m^{-1}
 - d) NmC^{-1}

- **22.** Electric flux is defined as:
 - a) $\phi = \mathbf{A} \cdot \mathbf{B}$
 - b) $\phi = \mathbf{E} \times \mathbf{A}$
 - c) $\phi = \mathbf{E} \cdot \mathbf{A}$
 - d) $\phi = \frac{E}{A}$
- **23.** When vector area is held perpendicular to the field lines, then the magnitude of electric flux is:
 - a) Negative
 - b) Maximum
 - c) Minimum
 - od) Zero
- **24.** When vector area is held parallel to electric field lines, the the magnitude of electric flux is:
 - •a) Maximum
 - b) Minimum
 - c) Either maximum or minimum
 - d) Negative
- **25.** The SI unit of electric flux is:
 - a) NmC^{-1}
 - **b**) Nm^2C^{-1}
 - c) NmC^{-2}
 - d) Nm^2C^{-2}
- **26.** The magnitude of the electric field inside oppositely charged plates, having uniform surface charge density σ , is:
- a) (σ/ε_0) b) $(\sigma/2\varepsilon_0)$ c) (q/ε_0r)
 - d) $\left(\frac{\sigma}{2\varepsilon_0 r} \right)$
- **27.** The electric intensity near an infinite plate of positive charge will be:
- a) $\binom{q}{\varepsilon_0}$ b) $\binom{\sigma}{2\varepsilon_0}$ c) $\binom{q}{A}$ d) $\binom{\sigma}{\varepsilon_0}$
- **28.** If a charged body is moved agaist the electric field, it will gain:
 - a) Potential energy
 - b) Kinetic energy
 - c) Mechanical energy
 - d) None of these

- **29.** One volt is
 - a) One joule per coulomb
 - b) One dyne per coulomb
 - c) One Newton per coulomb
 - d) One watt per second
- 30. Absolute potential difference, due of point charge of 1C at a distance of 1m is given by:

a) 9×10^6 volts b) 9×10^7 volts

- c) 9×10^8 volts
- d) 9×10^9 volts
- **31.** A charge of 0.01 C accelerated through a p.d of 1000 V acquires K.E
 - **a**) 10 J
 - b) 100 J
 - c) 200 J
 - d) 400 eV
- **32.** 1 joule =
 - a) $6.25 \times 10^{18} eV$
 - b) $6.25 \times 10^{-18} eV$
 - c) $1.6 \times 10^{-19} eV$
 - d) $9.1 \times 10^{-31} eV$
- **33.** One electron volt is equal to
 - a) 6.25×10^{18} /
 - b) $6.25 \times 10^{-18} J$
 - **c**) $1.6 \times 10^{-19} J$
 - d) 9.1×10^{-31} /
- 34. How many electron will have a charge of one coulomb?

a) 6.2×10^{18}

- b) 6.2×10^{19}
- c) 5.2×10^{18}
- d) 5.2×10^{19}
- **35.** Gravitational force between two objects does not depends on:
 - a) Force
 - b) Masses
 - c) Distance
 - d) Medium
- **36.** The charge on the electron was calculated by
 - a) Faraday
 - b) J.J. Thomson
 - c) Millikan
 - d) Einstein

- **37.** The equation for the stokes law is
 - a) $6\pi\eta r$
 - b) 6πηrv
 - c) 6*rv*
 - d) $8\pi\eta rv$
- **38.** The charge determined by the Millikan's experiment is

a)
$$q = \frac{qvd}{m}$$

b) $q = \frac{qvd}{g}$
c) $g = \frac{mgd}{v}$
d) None

- **39.** Capacitors may be considered as a device for
 - **(**a) Storing energy
 - b) Increasing resistance
 - c) Decreasing resistance
 - d) None
- **40.** The medium used b/w the plates of capacitor is called
 - a) Polarization
 - **b**) Dielectric
 - c) Insulators
 - d) Medium
- 41. Capacity of a capacitor depends upon
 - a) Size of plate
 - b) Distance b/w plates
 - c) Nature of dielectric b/w plates
 - d) All of above
- **42.** Farad is defined as:
 - С **a**)
 - V = AV = Cb)
 - c)
 - J
 - d)
- **43.** The capacitance of a parallel plate capacitor is given by:

a)
$$C = \frac{A}{\varepsilon_0 d}$$

b) $C = \frac{A\varepsilon_0}{d}$
c) $C = \frac{\varepsilon_0 d}{A}$
d) $C = \frac{d}{\varepsilon_0 d}$

44. The expression of energy stored in a capacitor is given by:

a)
$$E = CV^2$$

b)
$$E = \frac{1}{2}CV^2$$

c)
$$E = \frac{1}{2}C^2V$$

d)
$$E = \frac{1}{2}(CV)^2$$

- 45. Unit of energy density of electric field is:
 - a) $J C^{-1}$
 - b) JV^{-1}
 - c) $J m^{-3}$
 - d) $J F^{-3}$
- 46. The term "RC" has same unit as that of:
 - a) Potential
 - b) Capacitance
 - c) Energy
 - d) Time

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
1	с	17	с	33	с
2	d	18	d	34	а
3	d	19	b	35	d
4	с	20	d	36	с
5	b	21	а	37	b
6	b	22	с	38	с
7	b	23	d	39	а
8	а	24	а	40	b
9	b	25	b	41	d
10	с	26	а	42	а
11	а	27	b	43	b
12	d	28	а	44	b
13	b	29	a	45	с
14	b	30	d	46	d
15	d	31	a	47	b
16	b	32	а	48	b

- 47. The ratio of C_{vac} and C_{med} is equal to

 - a) ε_r b) $\frac{1}{\varepsilon_r}$ **b**)
 - c) ε_0 d) $\frac{1}{\varepsilon_0}$
- **48.** During charging of a capacitor, the ratio of instantaneous charge and maximum charge on plates of capacitors at t = RC is
 - a) 36.8% 6

- c) 20%
- d) 30%

CHAPTER # 13: CURRENT ELECTRICITY

- 1. One coulomb per second is equal to
 - a) Joule
 - b) Volt
 - c) Ampere
 - d) Walt
- 2. In the metallic conductor the current is due to flow of charge
 - a) Positive
 - •b) Negative
 - c) Proton
 - d) None
- **3.** Conventional current flow from
 - a) Point of higher potential to point of lower potential
 - b) Point of lower potential to point of higher potential
 - c) Point of lower potential to point of lower potential
 - d) None
- 4. In the thermocouple the heat energy is converted into
 - a) Mechanical energy
 - •b) Electric energy
 - c) Magnetic energy
 - d) None
- 5. The heating effect of current utilized in
 - a) Iron
 - b) Tube light
 - c) Fan
 - d) Motor
- 6. Through an electrolyte, electric current is passed due to drift of
 - a) Free electrons
 - b) Positive and negative ions
 - c) Free electrons and holes
 - d) Protons
- 7. Joule law can be expressed as
- a) $H = I^2 R t$

b)
$$H = IR^2 t$$

c)
$$H = \frac{I^2}{I^2}$$

d) $H = \frac{1}{Rt}$

- 8. The heat produced by passage of current through resistor is:
 - a) $H = I^2 R t$
 - b) $H = IR^2 t$

 - c) $H = \frac{I^2}{Rt}$ d) $H = \frac{I}{Rt}$
- 9. Current can be measured by using: a) Heating effect
 - •b) Magnetic effect
 - c) Chemical effect
 - d) None of these
- 10. In liquids and gases, the current is due to the motion of :
 - a) Negative charges
 - b) Positive charges
 - c) Neutral particles
 - d) Both negative and positive charges
- **11.** When electricity passes through the liquid, then process is called:
 - a) Electro late
 - b) Electrolysis
 - c) Electro-conductor
 - d) None
- 12. Magnetic effect of current is utilized in
 - a) Iron
 - b) Thermocouple
 - •c) Measurement of current
 - d) None
- 13. The VI-graph of Ohm's law is:
 - a) Hyperbola
 - b) Ellipse
 - c) Parabola
 - **d**) Straight
- 14. Mathematical form of ohm's law is
 - a) I = VR
 - **b**) I = V/R
 - c) I = R/V
 - d) R = IV
- 15. Ohm's law is valid for only current flowing in
 - •a) Conductors
 - b) Transistors
 - c) Diodes
 - d) Electric Areas

- 16. The proportionality constant between current and potential difference is:
 - a) ρ
- 🔴 b) R
 - c) *C*
- d) *V* **17.** 1 ohm is defined as:
 - $\frac{V}{C}$ a)
 - b)
 - A C
 - c) V
 - d)

18. In series circuit the net resistance is

- a) Algebraic Sum of all resistance
 - b) Sum of reciprocals of all resistances in circuit
 - c) Remain constant
 - d) None
- **19.** The reciprocal of resistivity is called
 - a) Resistance
 - b) Conduction
 - c) Conductivity
 - d) None
- **20.** The unit of conductivity is
 - a) Ω. m
 - b) $(\Omega.m)^{-1}$
 - c) $\Omega.m^{-1}$
 - d) None
- 21. A wire of resistance R is cut into two equal parts, its resistance becomes R/2. What happens to resistivity?
 - a) Double
 - •b) Same
 - c) Half
 - d) One forth
- **22.** When temperature increases, the resistance of conductor:
 - a) Increases
 - b) Decreases
 - c) Remains constant
 - d) Vanishes
- 23. Heat sensitive resistors are called
 - a) Resistors
 - b) Capacitors
 - c) Thermisters
 - d) Inductors

- 24. Thermistor can be used for the accurate measurement of
 - a) Voltage
 - b) Resistance
 - c) Temperature
 - d) Heat
- 25. The maximum power delivered by battery is:

• a)
$$P_{max} = \frac{E^2}{4r}$$

b)
$$P_{max} = 4rE^2$$

c)
$$P_{max} = VIT$$

- d) Unlimited
- **26.** If the length and diameter of conductor is double, the resistance is
 - a) Remain same
 - b) Double
 - **c**) Half
 - d) Four times
- 27. A wire of uniform cross-section A and length L is cut into two equal parts. The resistance of each part becomes:
 - a) Double
 - b) Half
 - c) 4 times
 - d) $\frac{1}{4}$ times
- 28. The fractional change in resistivity per Kelvin
 - a) Co-efficient in resistance
 - **b**) Co-efficient of resistivity
 - c) Resistance
 - d) None
- 29. In the carbon resistor their value can be find by their
 - a) Wires
 - b) Terminals
 - c) Color Bands
 - d) Spots
- **30.** The third band is written in the form of power of
 - a) 2
 - b) 6
 - c) 8
 - •d) 10
- **31.** The numerical value of black color is:
 - a) 3
 - b) 2
 - c) 1
 - **d**) 0

- **32.** The color code for the color Grey is
 - a) 7
 - b) 8
- c) 9
 - d) 5
- 33. The colors of strips on a certain carbon resistor from extreme left are yellow, black and red respectively. Its resistance is:
 - a) 4 kΩ
 - b) 400 Ω
 - c) 40 Ω
 - •d) 40 kΩ
- 34. If the tolerance color is gold then it value is
 - a) ± 2%
 - b) ±4%
 - (c) $\pm 5\%$
 - d) ±6%

35. Tolerance for silver band is:

- a) +5%
- **b**) ±10%
 - c) ±15%
 - d) +20%

36. A rheostat can be used as a

- a) Variable resistor
- b) Potential divider
- •c) Both a and b
- d) None of these
- **37.** The wire used in Rheostat is made from
 - a) Constantan
 - b) Nichrome
 - •c) Manganin
 - d) Tungston
- **38.** The S.I unit of emf is same as:
 - a) Work
 - b) Energy
 - c) Power
 - (d) Potential Difference
- **39.** The terminal potential difference of a battery of internal resistance "r" and emf "ε" is:
 - a) $V = \varepsilon + Ir$

b)
$$V = \varepsilon - Ir$$

c) $V = \frac{\varepsilon - r}{r}$

d)
$$V = \frac{I}{\varepsilon - r}$$

- 40. Which electric bulb has the least resistance?
 - a) 60 watts
 - b) 100 watts
 - c) 200 watts
 - d) 500 watts
- 41. An electric heater 220V, 440W has a resistance
 - a) 2 Ω
 - b) 110 Ω
 - c) 0.5 Ω
 - d) 20 Ω
- 42. Kirchhoff's first rule is:
 - a) $\sum V = 0$
 - b) $\sum R = 0$
 - c) $\sum I = 0$
 - d) $\Sigma T = 0$
- 43. Kirchhoff's first rule is based on conservation of:
 - a) Energy
 - b) Voltage
 - c) Charge
 - d) Mass
- 44. The algebraic sum of all the current at junction is zero, is Kirchhoff's
 - a) 1st law
 - b) 2^{nd} law
 - c) 3^{rd} law
 - d) 4^{th} law
- **45.** The algebraic sum of voltages changes around a closed circuit or loop is zero, is Kirchhoff's
 - a) 1^{st} law
 - **b**) 2^{nd} law c) 3^{rd} law

 - d) 4^{th} law
- **46.** An ideal voltmeter would have an infinite
 - a) Current
 - b) Voltage
 - c) Resistance
 - d) None of these
- **47.** The emf of two cells can be compared by
 - a) AVO meter
 - b) Voltmeter
 - •c) Potentiometer
 - d) Galvanometer

- 48. An accurate measurement of emf of a cell is made by
 - a) A voltmeter
 - b) An ammeter
 - c) A potentiometer
 - d) All of them

49. The ratio of emf of two cells $\mathcal{E}_1/\mathcal{E}_2$, is equal

- to
- a) $\frac{l_1}{l_2}$ b) 1:2

 - c) $\frac{l_2}{l_1}$ d) 2 : 1

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans
1	с	18	а	35	b
2	b	19	с	36	с
3	а	20	b	37	с
4	b	21	b	38	d
5	а	22	а	39	b
6	b	23	с	40	d
7	а	24	с	41	b
8	а	25	а	42	с
9	b	26	с	43	с
10	d	27	b	44	а
11	b	28	b	45	b
12	с	29	с	46	с
13	d	30	d	47	с
14	b	31	d	48	с
15	а	32	с	49	а
16	b	33	d		
17	d	34	с		

CHAPTER # 14. ELECTROMAGNETISM

- **1.** The units of magnetic field B, in system international is:
 - a) Weber
 - b) Tesla
 - c) Gauss
 - d) Newton
- 2. One tesla (T) is:
 - a) $1T = 1N A m^{-1}$
 - b) $1T = 1N A^{-1} m^{-1}$
 - c) 1T = 1N A m
 - d) $1T = 1N \ m \ A^{-1}$
- **3.** The magnetic flux "Ø" through an area "A" is:
 - a) $\emptyset = \mathbf{B} \times \mathbf{A}$
 - b) $\emptyset = \mathbf{B} \cdot \mathbf{A}$
 - c) $\emptyset = \mathbf{A} \times \mathbf{B}$
 - d) None of these
- 4. One Tesla is also equal to
 - a) wb.m²
 - b) wb.m⁻²
 - c) wb.m
 - d) None
- 5. Torque on a current carrying coil is:
 - a) BINA $\cos \alpha$
 - b) BINA $\sin \alpha$
 - c) BIL $\cos \alpha$
 - d) *BIL* sin α
- **6.** The magnetic force is simply a:
 - a) Reflecting force
 - b) Deflecting force
 - c) Restoring force
 - d) Gravitational force
- 7. The galvanometer can be made sensitive if the value of the factor $\frac{C}{BNA}$ is:
 - a) Made large
 - **b**) Made small
 - c) Remains constant
 - d) Infinite

- 8. When a small resistance is connected parallel to the galvanometer, the resulting circuit behaves as:
 - a) Voltmeter
 - b) Wheatstone bridge
 - c) Ammeter d) Potentiometer
- 9. The anode in the CRO is:
 - a) Control number of electrons
 - b) Control the brightness of spot formed
 - c) Accelerates and focus the beam
 - d) At negative potential with respect to cathode
- **10.** The galvanometer constant in a moving coil galvanometer is given by:

a)
$$K = \frac{NB}{CA}$$

b)
$$K = \frac{CA}{RAR}$$

c)
$$K = \frac{\frac{NAE}{NAE}}{\frac{C}{C}}$$

d)
$$K = \frac{CA}{NB}$$

- **11.** $\sum_{r=1}^{N} \mathbf{B} \cdot \mathbf{\Delta} \mathbf{L} = \mu_0 I$ is the relation for:
 - a) Milikan's law
 - b) Gauss's law
 - c) Ampere's aw
 - d) Lenz's law
- **12.** The brightness of spot on CRO screen is controlled by:
 - a) Anodes
 - b) Cathodes
 - c) Grid
 - d) Plates
- **13.** To measure the current in a circuit, ammeter is always connected in:
- a) Parallel
- **b**) Series
 - c) Sometimes parallel sometimes series
 - d) Neither series nor parallel
 - 14. If the angle b/w \vec{v} and B is zero then magnetic force will be
 - a) Max
 - b) Min
 - c) Zero
 - d) None

- **15.** A charged particles is projected at an angle into a uniform magnetic field. Which of the following parameter of the charged particle will be affected by magnetic field:
- a) Energy
- b) Momentum
 - c) Speed
- d) Velocity
 - **16.** Force on a moving charge in a uniform magnetic field will be maximum, when angle between v and B is:
 - a) 0°
 - b) 30°
 - c) 60°
 - **e**d) 90°
 - 17. The S.I. unit of magnetic flux is
 - a) Tesla
 - •b) Weber
 - c) Joule
 - d) Newton
 - 18. Beam of electrons are also called:
 - a) Positive rays
 - b) x-rays
 - c) cathode rays
 - d) cosmic rays
 - **19.** Tesla is the unit of
 - a) Electric field
 - •b) Magnetic field
 - •c) Magnetic field intensity
 - d) Electric field intensity
 - **20.** It is possible to set a charge at rest into motion with magnetic field
 - a) Yes
 - •b) No
 - c) Some Time
 - d) None
 - **21.** The grid in CRO _____
 - a) Controls the number of electrons accelerated by anode
 - b) Controls the brightness of the spot fall on the screen
 - •c) Both a and b
 - d) Deflects the beam of electrons

22. To convert a Weston-type galvanometer into voltmeter, the series resistance is given by

a)
$$R_h = \frac{V}{I_g}$$

b) $R_h = \frac{V}{I_g} - R_g$
c) $R_h = \frac{V}{R_g} - I_g$

- d) None of these
- **23.** The shape of magnetic field around a long straight current carrying wire is
 - a) Electrical
 - b) Squire
 - c) Varies with currentd) Circular
- 24. The electrons of mass "m" and charge "e" is moving in a circle of radius "r" with speed "v" in a uniform magnetic field of strength "B". then
 - •a) $r \propto m$

b)
$$r \propto B$$

c)
$$r \propto \frac{1}{r}$$

- d) $r \propto \frac{1}{m}$
- **25.** The toque in the coil can be increased
 - by increasing
 - a) Number of turns
 - b) Current and magnetic field
 - c) Area of coil
 - d) All of above
- 26. A current carrying loop, when placed in a uniform magnetic field will experiencea) Electric flux
 - b) Torque
 - c) Magnetic flux
 - d) Force
- **27.** The magnetic flux will be maximum if the angle between magnetic field strength and vector area is:
 - \bullet a) 0°
 - b) 60°
 - c) 90°
 - d) 180°
- 28. One weber is equal to
 - a) $N.A^2/A$
 - b) $N.m^2/A$
 - c) N.A/m
 - •d) N.m/A

- **29.** The waveform of sinusoidal voltage, its frequency and phase can be found by
 - a) CRO
 - b) Diode
 - c) Transistor
 - d) Radio
- **30.** The force on a charge particle moving parallel to magnetic field is
 - a) Maximum
 - b) Minimum
 - c) Zero
 - d) None
- **31.** The unit of permeability of free space is
- a) T.m/A
 - b) $T.m^2/A$
 - c) T.m/ A^2
 - d) None
- **32.** The value of μ_o is
 - a) $4 \pi \times 10^{-6}$
 - b) 4 π x 10⁻⁷
 - c) $4 \pi \times 10^{-8}$
 - d) 4 π x 10⁻⁹
- **33.** The magnetic induction inside current carryin solenoid is
 - a) $\mu_o nI$

b) μ_{o} NL

- c) μ_{oN}
- d) None

34. F = Fe + Fm is

- a) Electric force
- b) Magnetic force
- •c) Lorentz force
 - d) None
- 35. The material used in fluorescent screen
 - is
 - a) Electric
 - b) Magnetic
 - •c) Phosphors
 - d) None

- 36. In the galvanometer the current is
 - proportional to
 - a) Magnetic field
 - b) Electric field
 - c) Angle
 - d) None
- **37.** When a small resistance is connected in parallel to the galvanometer it is called
 - •a) Ammeter
 - b) Voltmeter
 - c) AVO meter
 - d) None
- **38.** The relation between current "*I*" and deflection " θ " in a moving coil galvanometer is:
 - a) $I \propto \frac{1}{a}$
 - b) $I \propto \cos \theta$
 - c) $I \propto \sin \theta$
 - d) $I \propto \theta$
- **39.** To convert a galvanometer into voltmeter we connect a resistance in
 - a) Series
 - b) Parallel
 - c) Series or parallel
 - d) None
- 40. AVO-meter is used to find
 - a) Current
 - b) Voltage
 - c) Resistance
 - d) All of above
- **41.** An ideal voltmeter has
 - a) Small resistance
 - b) High resistance
 - •c) Infinite resistance
 - d) None
- **42.** A galvanometer can be more sensitive if C/BAN is made
 - a) Very large
 - b) Very small
 - c) Unaltered
 - d) None
- 43. Ammeter and galvanometer
 - **(**a) Are always connected in series
 - b) Are always connected in parallel
 - c) Both in series and parallel
 - d) None

- **44.** The sensitivity of galvanometer is directly depends on
 - a) Magnetic field
 - b) Area of coil
 - c) Number of turns
 - d) All of above
- 45. The dot product of magnetic field induction and vector area is called
 - a) Electric flux
- **b**) Magnetic flux
 - c) Ampere law
 - d) None
- **46.** When the number of turns in a solenoid is doubled without any change in the length of the solenoid its self induction will be:
 - a) Four times
 - b) Doubled
 - c) Halved
 - d) None
- **47.** The wave form of sinusoidal voltage, its frequency and phase can be found by
 - a) CRO
 - b) Diode
 - c) Transistor
 - d) Radio
- **48.** Voltmeter is used to measure:
 - a) Current
 - b) Resistance
 - c) Temperature
- **d**) Potential difference
- **49.** The resistance of a voltmeter should have a very high resistance
 - a) It does not disturb the circuit
 - b) It draws some current
 - c) It same the galvanometer coil
 - d) None of these
- **50.** A voltmeter is always connected in:
- **a**) Parallel
 - b) Series
 - c) Perpendicular
 - d) Straight line

51. To find the shunt resistance we used equation

a)
$$R_{s} = \frac{IgRg}{I - Ig}$$

b) $R_{s} = \frac{IsRg}{I - Ig}$
c) $R_{s} = \frac{IgRs}{R - Ig}$
d) $R_{s} = \frac{IsRs}{I - Ig}$

- **52.** Ammeter is used to measure:
 - a) Resistance
 - b) Voltage
 - c) Current
 - d) Capacitance
- **53.** An avo-meter is also called:
 - a) An ammeter
 - b) A voltmeter
 - **c**) A multi.meter d) An ohm-meter
 - Q. No. Q. No. Ans. Ans. Q. No. Ans. 19 b & c 37 1 b а 2 20 38 b d b 39 3 b 21 с a 4 b 22 b 40 d 41 5 23 d с а 24 42 6 b а b 7 b 25 d 43 а 8 с 26 b 44 d 9 27 45 b a с 10 28 d 46 b а 11 с 29 47 a а 12 30 48 d с с 13 b 31 49 a a 14 с 32 b 50 а 15 b & d 33 51 a а 34 16 52 d с с 17 b 35 53 с с 18 36 с с

Key Chapter # 14

CHAPTER # 15. ELECTROMAGNETIC INDUCTION

- 1. The induced e.m.f. is produce due to
 - a) Motion of coil
 - b) Motion of magnet
 - c) The rate of change of flux
 - d) None
- 2. The direction of induced current is always so as to oppose the change which causes the current is called:
 - a) Faraday's law
 - **b**) Lenz's law
 - c) Ohm's law
 - d) Kirchhoff's 1st rule
- **3.** The energy stored per unit volume inside a solenoid is calculated by:

(a)
$$\frac{1}{2} \frac{B^2}{\mu_0} (Al)$$

(b) $\frac{1}{2} \frac{B^2}{\mu_0}$
(c) $\frac{1}{2} \frac{\mu_0}{B^2} (Al)$
(l) $\frac{1}{\mu_0} \frac{\mu_0}{B^2} (Al)$

d)
$$\frac{1}{2} \frac{\mu_0}{B^2}$$

- 4. The SI units of induced emf is
 - a) Ohm
 - b) Tesla
 - c) Henry
 - •d) Volt
- **5.** The principle of an alternating current generator is based on:
 - a) Coulomb's law
 - b) Ampere's law
 - **c**) Faraday's law
 - d) Lenz's law
- 6. If velocity of a conductor moving through a magnetic field B is made zero, then motional emf is:
 - a) -vBL

b)
$$-\frac{v}{BL}$$

c)
$$-\frac{BL}{BL}$$

- d) Zero
- 7. If we make the magnetic field stronger, the value of induced current is:
 - a) Decreased
 - **b**) Increased
 - c) Vanished
 - d) Kept constant

- 8. The inductance is more in self induction in:
 - a) Air cored coil
 - b) Iron cored coil
 - c) Tungsten cored coil
 - d) None of these
- 9. One henry is equal to:
 - •a) 1 ohm × 1 second
 - b) $1 ohm \times 1 meter$
 - c) $1 ohm \times 1 coulomb$
 - d) None of these
- **10.** A device which converts electrical energy into mechanical energy is called:
 - a) Transformer
 - b) AC generator
 - c) DC motor
 - d) DC generator
- **11.** When constant current flows in primary of transformer, then the emf induced across secondary of transformer is:
 - a) Zero
 - b) Constant
 - c) Alternating
 - d) Irregular
- **12.** 1 henry
 - a) $1 V A s^{-1}$
 - b) $1 V s A^{-1}$
 - c) $1 V m A^{-1}$
 - d) $1 V A m^{-1}$
- **13.** A generator converts mechanical energy into
 - a) Chemical energy
 - b) Light energy
 - c) Heat energy
 - •d) Electrical energy
- **14.** When a loop of wire is moved across a magnetic field, the current is produced in it is called
 - a) Eddy current
 - b) Direct current
 - c) Photo electric current
 - •d) Induced current

- 15. Energy stored in an inductor is:
- a) $\frac{1}{2}LI^2$
 - b) $\frac{1}{2}LI$
 - c) $\frac{1}{2}L^2I^2$
 - d) $\frac{1}{2}LI$
- 16. If fingers of right hand show the direction of magnetic field and palm shows the direction of force, then thumb points for:
 - a) Torque
 - b) Voltage
 - c) Current
 - d) Induced emf
- 17. Induced electric current can be explained using which law
 - a) Gauss's law
 - b) Faraday's law
 - c) Ohm's law
 - d) Ampere law
- **18.** Lenz's law is consistent with law of conservation of
 - a) Mass
- **b**) Energy
 - c) Charge
 - d) None
- **19.** An inductor is a circuit element that can store energy in the form of
 - a) Magnetic field
 - b) Electric flux
 - c) Electric field
 - d) None
 - 20. The negative sign with induced e.m.f. is due to
 - a) Faraday's law
 - **b**) Lenz's law
 - c) Ampere law
 - d) None
- 21. The relation of motional e.m.f., when a conductor is move in perpendicular magnetic field, is:
 - a) E=BLV
 - b) E=qBl
 - c) E=Blq
 - d) E=qVB

- **22.** If we increase the resistance of the circuit containing a coil, the induced e.m.f. will be
 - a) Increase
 - b) Decrease
 - c) Remain same
 - d) None
- **23.** The self-inductance may be defined by

• a)
$$L = \frac{-\epsilon}{\Delta I / \Delta t}$$

b) $L = \frac{-\Delta I / \Delta t}{\epsilon}$
c) $L = \frac{-\epsilon}{\Delta \varphi / \Delta t}$
d) $L = \frac{\epsilon}{\Delta \varphi / \Delta t}$

- **24.** Inductance are measured by
 - a) Coulombs
 - b) Amperes
 - c) Volt
 - d) Henry
- 25. An over loaded motor draws
 - •a) Max. current
 - b) Min. current
 - c) Half
 - d) None
- **26.** The co-efficient of mutual inductance is equal to

a)
$$\varepsilon \left(\frac{\Delta I_P}{\Delta t}\right)$$

b) $\varepsilon \left(\frac{\Delta t}{\Delta I_P}\right)$

- c) $\varepsilon \Delta I_P \Delta t$ d) None
- **27.** Alternating current changes
 - (a) Its magnitude as well as direction
 - b) Only direction but not magnitude
 - c) Only magnitude but not direction
 - d) None
- **28.** Inductance is measured in:
 - a) Volt
 - b) Ampere
 - **c**) Henry
 - d) Ohm

29. The instantaneous value of A.C. voltage is

a)
$$V = Vo \sin 2 \pi$$
 ft
b) $V = Vo \sin 2 \frac{\pi}{\pi}$ ft
c) $V = Vo \sin 2 \frac{\pi}{\pi}$ wt

- d) None
- 30. The induced e.m.f. in A.C. generator is
 - a) VBL sin ϕ
 - b) NESN sing ϕ

 $\bigwedge b \bigcap c$ NAB sin ϕ

d) NIAB sin ¢

- **31.** The back motor effect exist in the
- a) Generator
 - b) Mater
 - c) A.C. Meter
 - d) None
- **32.** The coil used in the generators is called
 - a) Commutaters
 - b) Slip rings
 - c) Armature
 - d) None
- **33.** The back ward generator is called
 - a) Electric motor
 - b) A.C. generator
 - c) Reverse generator
 - d) None
- 34. The principle of transformer is
 - a) Amperes law
- **b**) Mutual induction
 - c) Motional e.m.f.
 - d) None
- **35.** A transformer is a device which step up or stop down
 - a) Energy
 - b) Power
 - c) Voltage
 - d) All of above
- **36.** An ideal transformer obeys the law of conservation of:
 - a) Flux
 - b) Momentum
 - c) Emf
 - d) Energy

- **37.** The coil which is connected to input of a transformer is called:
- **a**) Primary
 - b) Secondary
 - c) Middle
 - d) None
- **38.** In the actual transformer, the output is always
 - a) Equal to input
- b) Less then input
 - c) More than input
 - d) None
- **39.** In ideal transformer when applied potential difference is double, the current
 - is:
 - a) Doubled
 - b) Tripled
 - •c) Halved
 - d) Same
- **40.** For a good transformer the hysterics loop are in size.
 - a) Small
 - b) Large
 - c) Zero
 - d) None
- **41.** To minimize the heating effect in the transmission lines
 - a) High current, low voltage in used
 - •b) High voltage, low current in used
 - c) Same voltage and current in used
 - d) None
- 42. Maximum emf generated in a generator is:
 - a) $\varepsilon = \varepsilon_0 \sin \theta$
 - b) $\varepsilon = N\omega AB\sin\theta$
 - •c) $\varepsilon = N\omega AB$
 - d) None of these
- **43.** Induced e.m.f is
 - a) Directly proportional to change in flux
 - •b) Directly proportional to rate of change
 - c) of flux
 - d) Inversely proportional to change of flux
 - e) None of these

- 44. Lenz's law is in accordance with the law of conservation of:
 - a) Momentum
 - b) Angular momentum
 - c) Energy
 - d) Charge
- **45.** When motor is at its Max. speed the back e.m.f will be
 - **a**) Maximum
 - b) Zero
 - c) Cannot tell
 - d) None of these
- 46. The application of mutual induction is a
 - a) Television
 - b) Radio
 - c) D.C. motor
 - d) Transformer
- **47.** The ratio of average induced emf to the rate of change of current in the coil is called:
 - a) Self inductance
 - b) Mutual inductance
 - c) Self inductance
 - d) Mutual inductanc
- 48. Which of the following is not present in
 - AC generator:
 - a) Armature
 - b) Magnet
 - c) Slip rings
 - d) Commutator

Key Chapter # 15						
Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.	
1	с	17	b	33	а	
2	b	18	b	34	b	
3	а	19	а	35	с	
4	d	20	b	36	d	
5	с	21	а	37	а	
6	d	22	с	38	b	
7	b	23	а	39	с	
8	b	24	d	40	а	
9	а	25	a	41	b	
10	с	26	b	42	с	
11	а	27	а	43	b	
12	b	28	с	44	с	
13	d	29	а	45	а	
14	d	30	none	46	d	
15	а	31	а	47	а	
16	с	32	с	48	d	

CHAPTER # 16. ALTERNATING CURRENT CIRCUITS

- **1.** The mean value of A.C. over a complete cycle in
 - a) Maximum
 - b) Minimum
 - c) Zero
 - d) None
- **2.** The inductive reactance is:

a) $X_L = \omega C$

b) $X_L = \omega L$

c)
$$X_L = \frac{1}{\omega C}$$

d)
$$X_{t} = \frac{1}{2}$$

$$(I) \quad \Lambda_L = \omega_L$$

- **3.** At high frequency, the current through a capacitor of AC circuit will be:
 - a) Large
 - b) Small
 - c) Infinite
 - d) Zero
- 4. The highest value reached by the voltage or current in one cycle is called
 - a) Peak to peak value
 - b) Peak value
 - c) Instantaneous valued) Root mean square value
- 5. If the motor is overloaded, then the magnitude of "back emf":
 - a) Increases
 - b) Decreases
 - c) Constant
 - d) Becomes zero
- 6. A capacitor is perfect insulator for:a) Alternating current
 - b) Direct current
 - c) Both a and b
 - d) None
- **7.** The process combining low frequency signal with high frequency radio wave is called:
 - a) Modulation
 - b) Amplification
 - c) Demodulation
 - d) Resonance
- 8. In pure resistive AC circuit, instantaneous value of voltage or current:
 - a) Current lags behind voltage
 - b) Current leads voltage by $\frac{\pi}{2}$
 - c) Both are in-phase
 - d) Voltage leads current by $\frac{\pi}{2}$

- 9. Which of the following requires a material medium for their propagation:a) Heat waves
 - b) X-ravs
 - b) A-rays
 - c) Sound wavesd) Ultravoilot rays
 - , , , , , , ,
- **10.** In modulation, low frequency signal is known as:
 - a) Loaded signal
 - b) Fluctuated signal
 - c) Harmonic signal
 - d) Modulation signal
- **11.** The mutual induction between two coils depends upon:
 - a) Area of the coils
 - b) Number of turns
 - c) Distance between the coils
 - d) All of these
- 12. Pure choke consumes:
 - a) Minimum power
 - b) Maximum power
 - c) No power
 - d) Average power
- **13.** To construct a step down transformer:
 - $\bullet a) \quad N_S < N_P$
 - b) $N_P < N_S$
 - c) $N_S = N_P$
 - d) $N_S.N_P = 1$
- **14.** Power dissipation in pure inductive or in a pure capacitive circuit is:
 - a) Infinite
 - **b**) Zero
 - c) Minimum
 - d) Maximum
- **15.** The practical appllication of phenominon of mutual induction is:
 - a) Electrical motor
 - b) Transformer
 - c) Ac generator
 - d) DC generator
- **16.** There are _____ types of modulations:
 - a) 1
 - b) 2
 - c) 3
 - d) 4

- 17. The SI unit of impedance is:
 - a) Henry
 - b) Hertz
 - c) Ampere
 -) Ohm
- **18.** Which of the following is true for a step down transformer:
 - a) $N_P > N_S$
 - b) $N_P < N_S$
 - c) $N_P = N_S$
 - d) None of these
- **19.** If I_0 is the peak value of AC, its average value over the complete cycle is:
 - a) $\frac{I_0}{\sqrt{2}}$
 - a) $\sqrt{2}$ b) $\sqrt{2}I_0$
 - $\frac{1}{\sqrt{2}}$
 - c) $\frac{\sqrt{2}}{I_0}$
 - d) zero
- **20.** At resonance, the phase angle for RLC series resonance circuit equals:
 - a) 0°
 - b) 90°
 - c) 180°
 - d) 270°
- **21.** The unit of impedance is:
 - a) Ohm
 - b) $(Ohm)^{-1}$
 - c) $(0hm m)^{-1}$
 - d) no unit
- **22.** A device that allows permits flow of DC through the circuit easily, is called:
 - a) Inductor
 - b) Capacitor
 - c) AC generator
 - d) Transformer
- **23.** The phase difference between each pair of coils of a three phase AC generator is:
 - a) 0°
 - a) 0 b) 90°
 - c) 120°
 - d) 180°
- **24.** Main reason for the world wide use of AC is that it can be transmitted to:
 - a) Short distances at very low cost
 - b) Long distances at very high cost
 - c) Short distances at very high cost
 - d) Long distances at very low cost

- **25.** If $V_{rms} = 10\sqrt{2}$ volts, then phase voltage V_0 will be:
 - a) 10 volts
 - **b**) 20 volts
 - c) 40 volts
 - d) $\frac{10}{\sqrt{2}}$ volts
- **26.** At resonance RLC series circuit shows the behavior of:
 - a) Pure resistive circuit
 - b) Pure capacitive circuit
 - c) Pure inductive circuit
 - d) Pure RLC circuit
- **27.** At resonance, the value of current in RLC series circuit is equal to:

a)
$$\frac{V_0}{R}$$

- b) $V_0 R$
- c) $\frac{1}{2}$
- d) zero
- **28.** At high frequency, RLC series circuit shows the behavior of:
 - a) Pure inductive circuit
 - b) Pure resistive circuit
 - c) Pure capacitive circuitd) Pure RLC circuit
- 29. The r.m.s. value of A.C current in
 - **a**) 0.707 I_o
 - b) 0.707 V_o
 - c) $0.707 R_{o}$
 - d) None
- **30.** In pure resistive A.C. circuit the voltage and current are
 - a) In phase
 - b) Voltage leads the current
 - c) Current leads the voltage
 - d) None
- **31.** The waves which can also pass through the vacuum are
 - a) Matter wave
 - b) Mechanical wave
 - **c**) Electromagnetic wave
 - d) Transverse wave
- **32.** The unit used for capacitive reactance is
 - a) Volt
 - b) Ampere
 - c) Joule
 - d) Ohm

- **33.** Power dissipated in pure inductor is:
 - a) Large
 - b) Small
 - c) Infinite
 - d) Zero
- **34.** If the frequency of A.C in large the reactance of capacitor is
 - a) Large
 - b) Small
 - c) Zero
 - d) None
- **35.** In case of capacitor, the voltage lag behind the current by
 - a) 90°
 - b) 60°
 - c) 30°
 - d) 180°
- **36.** In the pure inductor the resistance is
 - a) Zero
 - b) Maximum
 - c) Minimum
 - d) None
- **37.** In pure inductive circuit the voltage
 - **a**) Lead the current by 90°
 - b) Ledge the current by 90°
 - c) Remain same with current
 - d) None
- **38.** The reactance of inductor is represented by
 - a) Xc
 - b) X_L
 - c) R_L
 - d) None
- **39.** If the frequency of A.C. is doubled, the reactance of inductor will be
 - a) Half
 - b) Same
 - c) Double
 - d) Triple
- **40.** The average power dissipated in a pure inductor is
 - a) Maximum
 - b) Minimum
 - c) Zero
 - d) None
- **41.** By increasing the frequency of A.C. through an inductor the reactance will
 - be
 - a) Increases
 - b) Decreases
 - c) Remain same
 - d) None

- **42.** In case of phasor diagram the vector rotates
 - a) Clockwise
 - b) Anti clockwise
 - c) Remain stationary
 - d) None
- **43.** The combine opposition of resistor, capacitor and inductor is called
 - a) Reactance
 - b) Resistor
 - **c**) Impedance
 - d) None
- 44. The S.I unit of impedance is called
 - a) Joule
 - b) Weber
 - c) Ampere
 - d) Ohm
- **45.** When A.C. flow through RC series circuit the magnitude of voltage is

a)
$$V = I\sqrt{R^2 + X_L^2}$$

b) $V = I\sqrt{R^2 + X_C^2}$
c) $V = IR$

- d) None
- **46.** The magnitude of voltage in case of RL series circuit

• a)
$$V = I\sqrt{R^2 + X_L^2}$$

b) $V = I\sqrt{R^2 + X_C^2}$
c) $V = IR$

- d) None
- **47.** The average power in case of A.C. series circuit is

a)
$$P = VI$$

- b) $P = VI\cos\varphi$
 - c) $P = VI \sin \varphi$
 - d) None
- **48.** In equation $P = VI \cos \varphi$, the factor $\cos \varphi$ is called
 - φ is called
 - a) Cosine factor
 - **b**) Power factor
 - c) Phase
 - d) None
- **49.** The behavior of resistance is frequency a) Dependent
 - **b**) Independent
 - c) No, response
 - d) None of these

- **50.** The impedance Z can be expressed as:
 - a) $V_{rms} + I_{rms}$ b) $V_{rms} - I_{rms}$
 - b) $v_{rms} \sim T_{rms}$ c) V_{rms}/I_{rms}
 - $\begin{array}{c} \text{c} \\ \text{d} \end{array} \stackrel{I_{rms}}{} I_{rms} / I_{rms}$

51. At resonance frequency the power factor

- is
- a) One
- b) Zeroc) Two
- d) Three
- **52.** The frequency at which X_L is equal to X_C in called
 - a) Resonance frequency
 - b) Threshold frequency
 - c) Non-frequency
 - d) None
- **53.** At resonance frequency the impedance of A.C series circuit is
 - a) Maximum
 - **b**) Minimum
 - c) Can not explain by give data
 - d) None
- **54.** In parallel RLC circuit , at resonance frequency, there will be maximum
 - a) Power
 - b) Voltage
 - c) Impedance
 - d) None
- 55. The electrical oscillators are used in
 - a) Metal detectors
 - b) Amplifier
 - c) Diode
 - d) None
- **56.** Which of the following permits direct current to flow easily?
 - a) Resistance
 - b) Capacitance
 - c) Inductance
 - d) None of these
- 57. A.M stands for
 - **a)** Amplitude Modulation
 - b) Applied Metal
 - c) Accurate Measurement
 - d) None
- 58. F.M stands for
 - **a**) Frequency Modulation
 - b) Frequency Metal
 - c) Frequency Member
 - d) None

- **59.** The process of combing the low frequency signal with high frequency radio-wave is called
 - a) Modulation
 - b) Amplification
 - c) Rectification
 - d) None
- 60. A capacitor is perfect insulator for:
 - a) Alternating current
 - b) Direct current
 - c) Both a and b
 - d) None
- **61.** During each cycle A.C voltage reaches its peak value
 - a) One time
 - **b**) Two times
 - c) Four times
 - d) None of these
- **62.** In modulation, high frequency radio wave is called:
 - a) Fluctuated wave
 - **(b)** Carrier wave
 - c) Matter wave
 - d) Energetic wave
- **63.** At high frequency the reactance of the capacitor is
 - a) Low
 - b) Large
 - c) Very large
 - d) None of these
- **64.** The behavior of resistance is frequency a) Dependent
 - **b**) Independent
 - c) No response
 - d) None of these
- **65.** In an inductor the phase difference between the current and voltage is
 - a) Current lags voltage by 90°
 - b) Voltage lags current by 180°
 - c) Current leads voltage by 90°
 - d) None of these
- **66.** The condition of resonance reached when
 - a) $X_C > X_L$
 - b) $X_L < X_C$
 - $C) \quad X_L = X_C$
 - d) None of these

- 67. The phase difference between coils of three phase A.C is
 - a) 60°
 - b) 45°
 - c) 90°
 - d) 120°

68. Modulation is the process in which

- a) Amplitude is change
- b) Frequency is change
- c) Both a & b
 - d) None of these

- 69. How many times per second will an incandescent lamp reach maximum brilliance when connected to a 50Hz source?
 - a) 50 times
 - b) 100 times
 - c) 200 times
 - d) None of these
- 70. The peak value of sinusoidal voltage in an AC circuit is 50V. The rms value of voltage is roughly equal to
 - 70V a)
 - b) 40V
 - 35V **(**)
 - d) 45V
- **71.** In RLC series AC circuit, when $X_L = X_C$ then impedance is
 - a) Minimum
 - b) Maximum
 - Zero c)
 - d) None

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
1	с	25	b	49	b
2	b	26	а	50	с
3	а	27	а	51	a
4	b	28	с	52	а
5	b	29	a	53	b
6	b	30	а	54	с
7	а	31	с	55	а
8	с	32	d	56	с
9	с	33	d	57	а
10	d	34	b	58	а
11		35	а	59	а
12	с	36	а	60	b
13	а	37	а	61	b
14	b	38	b	62	b
15	b	39	с	63	а
16	b	40	с	64	b
17	d	41	а	65	а
18	а	42	b	66	с
19	d	43	с	67	d
20	а	44	d	68	с
21	а	45	b	69	b
22	а	46	а	70	с
23	с	47	b	71	a
24	d	48	b		

v Chanton # 16 \mathbf{v}

CHAPTER # 17. PHYSICS OF SOLIDS

- **1.** What is the S.I unit of modules of elasticity of substances?
 - a) Nm^{-2}
 - b) Jm^{-2}
 - c) Nm^{-1}
 - d) Being number, it has no unit
- 2. The bands in atom containing conductive electrons, according to "band theory of solids" is
 - a) Conduction band
 - b) Valance band
 - c) Forbidden band
 - d) None of these
- **3.** The substances which have partially filled conduction bands are called:
 - a) Insulators
 - b) Semi-conductors
 - c) Conductors
 - d) Super conductors
- **4.** What type of impurity is to be added to the semi-condutor material to provide holes:
 - a) Monovalent
 - b) Trivalent
- **c**) Tetravalent
 - d) Pentavalent
- 5. Which of the following is an example of ductile substances:
 - a) Lead
- **b**) Copper
 - c) Glass
 - d) Lead and copper
- **6.** When a stress changes the shape of a body, it is called:
 - a) Volumetric stress
- **b**) Shear stress
 - c) Tensile stress
 - d) Compressional strees
- 7. The ration of applied stress to volumetric strain is called:
 - a) Young's modulus
 - b) Shear modulus
- c) Bulk modulus
 - d) Tensile modulus

- **8.** Substances which break just after the elastic limit is reached are called:
 - a) Ductile substances
 - b) Hard substances
 - c) Soft substances
 - d) Brittle substances
- 9. Cure temperature for iron is:
 - a) 0 °C
 - b) 570 °C
 - c) 750 °C
 - d) 1025 °C
- 10. The SI unit of stress is same as that of:
 - a) Momentum
 - **b**) Pressure
 - c) Force
 - d) Length
- 11. Which of the following has least energy gap?
- **a**) Conductors
 - b) Insulators
 - c) Semi-conductors
 - d) None of these
- **12.** A magnetism produced by electrons within an atom is due to:
 - a) Spin motion of electrons
 - b) Orbital motion of electrons
 - c) Both Spin and orbital motion of electrons
 - d) Vibratory motion of electrons
- **13.** If the conductivity of a material is high, then it is:
 - a) An insulator
 - b) A semi-conductor
 - c) A good conductor
 - d) A super condutor
- **14.** A substance having empty conduction band is called:
 - a) Semi-conductor
 - b) Conductor
 - c) Insulator
 - d) None of these
- **15.** The stress that produces change in length is known as:
 - **a**) Tensile stress
 - b) Shear stress
 - c) Volumetic stress
 - d) Longitudenal stress

- 16. What are the dimensions of stress?
 - a) MLT^2
 - b) $ML^{-2}T^{-1}$
- c) $ML^{-1}T^{-2}$
 - d) $ML^{o}T^{-1}$
- **17.** Which one of the following physical quantities does not have the dimensions of force per unit?
 - a) Stress
 - **b**) Strains
 - c) Young's modulus
 - d) Pressure

18. Germanium is:

- a) semi-conductor
 - b) conductor
 - c) insulator
 - d) none of these

19. unit of strain is:

- Ν a)
- $\frac{m^2}{N}$ b)
- m
- c) *N* m
- **d**) no unit
- 20. At curie temperature, iron becomes:
 - a) Ferromagnet
 - b) Diamagnet
 - c) Paramagnet
 - d) Super-conductor
- Materials that undergo plastic deformation 21. before breaking are called
 - a) Brittle
 - b) Ductile
 - c) Amorphous
 - d) Polymers
- Formation of large molecule by joining 22.
- small molecules is
 - a) Fusion

• b) Polymerization

- c) Crystallization
- d) Subtraction
- 23. Any alteration produced in shapes, length or volume when a body is subjected to some external force is called
 - a) Stiffness
 - b) Ductility
 - c) extension
 - d) deformation

- 24. The energy band occupied by the valence electrons is called _
 - a) Energy state
 - Valence band b)
 - c) -ve energy state
 - d) Conduction band
- 25. the substances having negative temperature coefficient of resistance is called:
 - a) Conductors
 - b) Insulators
 - c) Semi-conductor
 - d) None of these
- **26.** The Curie temperature is that at which
 - a) Semi conductor becomes conductors
 - b) Ferromagnetic becomes paramagnetic
 - c) Paramagnetic becomes diamagnetic
 - d) Metal becomes super conductor
- 27. Materials in which valence electrons are tightly bound to their atoms at low temperature are called _____
 - a) Semi conductors
 - b) Super conductors
 - c) Insulators
 - d) Conductors

28. The band theory of solids explains satisfactorily the nature of

- a) Electrical insulators alone
- b) Electrical conductors alone
- c) Electrical semi conductors alone
- d) All of the above
- **29.** A vacant or partially filled band is called
 - a) Conduction band
 - b) Valence band
 - c) Forbidden band
 - d) Empty band
- 30. A completely filled or partially filled band is called
 - a) Conduction band
 - **b**) Valence band
 - c) Forbidden band
 - d) Core band

31. Which one has the greatest energy gap

- a) Semi-conductors
- b) Conductors
- c) Metals
- d) Non-metals

32. With increase in temperature, the electrical conductivity of intrinsic semi conductors

- a) Decreases
- •b) Increases
- c) Remain the same
- d) First increases, then decreases
- **33.** Holes can exists in____
 - a) Conductors
 - b) Insulators
 - •c) Semi conductors
 - d) All of the above

34. In a semi conductors, the charge carriers are

- a) Holes only
- b) Electrons only
- c) Electrons and holes both
 - d) All of the above
- 35. The net charge on N-type material is
 - a) Positive
 - b) Negative
 - c) Both a & b
 - d) Neutral
- **36.** The most stable material for making permanent magnet is:
 - a) Iron
 - **b**) Steel
 - c) Aluminum
 - d) Copper
- **37.** Pentavalent impurities are called
 - a) Donor impurities
 - b) Acceptor impurities
 - c) Sometimes donor and some times
 - d) Acceptors
- 38. Minority carriers in N-type materials are
 - a) Electrons
 - b) Protons
 - c) Neutrons
 - d) Holes

- **39.** The temperature at which conductors lose its resistivity is called
 - a) Supper temperature
 - b) Kelvin temperature
 - c) Critical temperature
 - d) None
- **40.** The magnetic domains are the small regions of the order of
 - •a) Millimeter
 - b) Micrometer
 - c) Micron
 - d) None of these
- **41.** N-type semi-conductor is obtained by doping intrinsic semi-conductors with _____
 - a) Tetravalent impurity atom
 - b) Trivalent impurity atom
 - c) Pentavalent impurity atom
 - d) Hexavalent impurity atom
- **42.** The first supper conductor was discovered by a) Fermi
 - b) Kmaerling
 - c) Weinberg
 - d) None
- **43.** Examples of brittle substances are
 - a) Glass
 - b) Copper
 - c) Lead
 - d) None
- 44. Example of crystalline solids are also
 - a) Metals
 - b) Ionic compounds
 - c) Ceramics
 - d) All of them
- **45.** a semi-conductor will behave as insulator when:
 - a) High potential difference is applied
 - b) When its temperature is 0 k
 - c) Pentavalent impurity added
 - d) Trivalent impurity added
- 46. The field of long bar magnet is like a
 - a) Solenoid
 - b) Toroid
 - c) Pieces of magnet
 - d) None

- 47. The curie temperature of Iron is
 - a) 600°C
 - b) 650°C
 - c) 700°C
 - d) 750°C
- 48. The examples of diamagnetic are
 - a) Water
 - b) Copper
 - c) Antimony
 - d) All of them
- 49. Strain is dimensionless and has
 - a) Units
 - b) No units
 - c) S.I units
 - d) None
- **50.** The electrons occupying the outermost shell of an atom and the electrons occupying in the energy band are called
 - a) Energy band
 - **b**) Valence band
 - c) Forbidden energy band
 - d) None of these
- **51.** Conductors are those materials in which the free electrons
 - a) Very large
 - b) Very small
 - c) Plenty of
 - d) None of these
- **52.** The magnetism produced by electrons within an atom is due to
 - a) Spin motion
 - b) Orbital motion
 - c) Spin & orbital motion
 - d) None of these
- **53.** The combination of solenoid and a specimen of iron inside it make a powerful magnet called
 - a) Horse shoe magnet
 - b) Bar magnet
 - c) Electromagnet
 - d) None of these
- **54.** the substance in which the atoms don't form magnetic dipole are called:
 - a) ferromagnetic
 - b) paramagnetic
 - c) diamagnetic
 - d) conductors

- **55.** A current which demagnetize the material completely is called
 - a) Applied current
 - b) Coercive current
 - c) Maximum current
 - d) None of these
- **56.** The energy need to magnetize and demagnetize the specimen during the each cycle of magnetizing current is
 - a) Value of current
 - b) Value of demagnetizing current
 - c) Value of magnetic flux density
 - d) Area of the loop
- **57.** The temperature below which resistivity of some materials becomes zero, is called:
 - a) Kelvin temperature
 - b) Critical temperature
 - c) Absolute zero temperature
 - d) Limiting temperature
- **58.** A well known example of an intrinsic semiconductor is:
 - 🔍 a) Germanium
 - b) Phosphorous
 - c) Aluminum
 - d) Cobalt
- 59. The critical temperature for mercury is:
 - a) 7.2 K
 - b) 4.2 K
 - c) 1.18 K
 - d) 3.7 K

(

Key Chapter # 17 Q. No. Ans. Q. No. Ans. Q. No. Ans. 21 b 41 1 a с 2 22 b 42 b а 3 с 23 d 43 a 4 с 24 b 44 d 5 b 25 с 45 а 6 b 26 b 46 a 7 с 27 а 47 d 8 d d d 28 48 9 с 29 a 49 b b 10 b 30 b 50 11 a 31 d 51 а b 12 с 32 52 с 13 33 53 с с с 14 с 34 с 54 с 15 35 d 55 b а b 16 с 36 56 d 17 b 37 а 57 b 18 38 d 58 a а 19 d 39 с 59 b 20 40 60 с с a

CHAPTER # 18. ELECTRONICS

- **1.** A semi conductor can be used as a rectifier because
 - a) It has low resistance to the current flow when forward biased
 - b) It has high resistance to the current flow when reversed biased
 - c) It has low resistance to the current flow when forward biased and high resistance when reversed biased
 - d) None of the above
- 2. The central region of a transistor is called:
 - a) Base
 - b) Emitter
 - c) Collector
 - d) Neutral
- 3. The SI unit of current gain is:
 - a) Ampere
 - b) Volt
 - c) Ohm-meter
 - d) It has no units
- **4.** A NAND gate with two inputs A & B has an output 0 if
 - a) A is 0
 - b) B is 0
 - c) Both A and B are 0
 - d) Both A and B are 1
- 5. The gain G of non inverting operational amplifier is

a)
$$G = -\frac{R_2}{R_1}$$

b) $G = 1 + \frac{R_2}{R_1}$
c) $G = \frac{R_2}{R_1}$

$$U = \frac{1}{R_1}$$

- d) $G = 1 \frac{R_2}{R_1}$
- **6.** When a PN junction is reverse biased, the depletion region is
 - a) Widened
 - b) Narrowed
 - c) Normal
 - d) No change
- 7. A potential barrier of 0.7 V exist across pn junction made from
 - a) Silicon
 - b) Germanium
 - c) Indium
 - d) Gallium

- **8.** A diode characteristics curve is a graph plotted between
 - a) Current and time
 - b) Voltage and time
 - c) Voltage and current
 - d) Forward voltage and reverse current
- 9. The output of AND gate will be 1 when
 - a) Both inputs are at 0
 - b) Either one input is at 1
 - c) Both inputs are at 1
 - d) None of these
- **10.** For non-inverting amplifiers if $R_1 = \infty \Omega$ and $R_2 = 0 \Omega$, then gain of amplifier is
 - a) -1
 - b) 0
 - c) +1
 - d) infinite
- **11.** An expression for current gain of a transistor is given by
 - a) $\beta = \frac{I_B}{I}$

b)
$$\beta = I_P + I_C$$

c)
$$\beta = I_c - I_p$$

$$\beta = \frac{I_C}{I_B}$$

(

- **12.** In n-type materials, the minority carriers are a) Free electrons
 - b) Holes
 - c) Protons
 - d) Mesons
- **13.** Transistors are made from
 - a) Plastics
 - b) Metals
 - c) Insulators
 - d) Doped semi-conductors
- 14. The number of diodes in a bridge rectifier is
 - **a**) 4
 - b) 2
 - c) 3
 - d) 5
- **15.** The reverse current through PN junction is
 - a) Infinite
 - b) Zero
 - c) Less than forward current
 - d) Greater than forward current
- 16. Photocells are used for
 - a) Security system
 - b) Counting system
 - c) Automatic door system
 - d) All of these

- 17. Transistor has
 - a) 2 regions
 - **b**) 3 regions
 - c) 4 regions
 - d) 1 region
- **18.** A complete amplifier circuit made on a silicon chip and enclosed in a small capsule is called
 - a) Diode
 - b) Inductor
 - c) Resistor
 - d) Operational amplifier
- **19.** The open loop gain of an operational amplifier is of the order of
 - a) 10⁸
 - b) 10⁵
 - c) 10²
 - d) 10⁻³
- 20. The automatic working of streets lights is due to
 - a) Inductor
 - b) Capacitor
 - c) Comparator
 - d) Rectifier
- **21.** In half ware rectification, the output DC voltage is obtained across the load for
 - a) The positive half cycle of input AC
 - b) The negative half cycle of input AC
 - c) The positive and negative half cycles of input AC
 - d) Either positive or negative half cycle of input AC
- 22. The color of light emitted by LED depends on
 - a) Its forward biased
 - b) Its reversed biased
 - c) The amount of forward current
 - •d) The type of semi conductor material used
- 23. A PN junction photodiode is
 - a) Operated in forward direction
 - **b**) Operated in reversed direction
 - c) A very fast photo detector
 - d) Dependent on thermally generated minority carriers
- **24.** The reverse current through semi-conductor diode is due to
 - a) Holes
 - b) Electrons
 - c) Majority carriers
 - **d**) Minority carriers
- **25.** The potential barrier for PN junction made from Si at room temperature is
 - a) 0.9 V
 - b) 0.3 V
 - **c**) 0.7 V
 - d) 0.8 V

- **26.** Process of conversion of DC to AC is called
 - a) Rectification
 - b) Amplification
 - c) Oscillation
 - d) Modulation
- **27.** Which one of the following is called fundamental gate
 - a) NOR gate
 - **b**) NOT gate
 - c) NAND gate
 - d) Exclusive OR gate
- **28.** For proper working of a transistor in normal circuits
 - a) Emitter base junction is reversed biased, collector base junction is forward biased
 - b) Emitter base junction is forward biased and collector base junction is forward biased
 - c) C-B junction is reversed biased, E-B junction is forward biased
 - d) C-B junction is reversed biased and E-B junction is reversed biased
- **29.** In a properly biased NPN transistor most of the electrons from the emitter
 - a) Recombine with holes in the base
 - b) Recombine in the emitter itself
 - c) Pass through the base to the collector
 - d) Are stopped by the junction barrio
- **30.** A diode characteristic curve is a graph between
 - a) Current and time
 - b) Voltage and time
 - c) Voltage and current
 - d) Forward voltage and reverse current
- **31.** A NOR Gate is ON only when all its input are a) ON
 - b) OFF
 - c) Positive
 - d) High
- **32.** A logic gate is an electronic circuit which
 - a) Makes logic decision
 - b) Work on binary algebra
 - c) Alternates between 0 and 1
 - d) None of these
- **33.** The output of a 2-input OR gate is zero only when its
 - a) Both input are zero
 - b) Either input is 1
 - c) Both input are 1
 - d) Either input is 0

- **34.** An XOR gate produces an positive logic output only when its two inputs are
 - a) High
 - b) Low
 - c) Different
 - d) Same
- 35. An AND Gate
 - a) Implement logic addition
 - b) Is equivalent to a series switching circuit
 - c) Is any or all gate
 - d) Is equivalent to a parallel switching circuit
- 36. The only function of a NOT gate is to
 - a) Stop a signal
 - b) Re-complement a signal
 - c) Invert an input signal
 - d) Acts as a universal gate
- **37.** The forward current through a semiconductor diode circuit is due to
 - a) Minority carriers
 - b) Majority carriers
 - c) Holes
 - d) Electrons
- **38.** The device used for conversion of AC into DC is
 - a) An oscillator
 - b) A detector
 - c) An amplifier
 - d) A rectifier
- **39.** The thickness of depletion region is of the order
 - of
 - a) 10^{-7} m
 - b) 10^{-6} m
 - c) 10^{-5} m
 - d) 10^{-4} m
- **40.** The ratio of β gives the
 - a) Voltage gain
 - b) Current gain
 - c) Input resistance
 - d) None
- **41.** The resistance between + ive and ive inputs of op amplifier is
 - a) 100Ω
 - b) 1000 Ω
 - c) $10^6 \Omega$
 - d) None of these
- **42.** Photo voltic cell have
 - a) Battery input
 - b) No external bias
 - c) No internal bias
 - d) None

- 43. Transistor can be used as
 - a) Oscillators
 - b) Switches
 - c) Memory unit
 - d) All of them
- 44. NOT gate has only
 - a) One input
 - b) Two inputs
 - c) Many inputs
 - d) None
- **45.** A photo diode can switch its current ON and OFF in
 - a) Milli seconds
 - b) Micro seconds
 - c) Nano seconds
 - d) None
- **46.** Diode is a device which has ______ terminals.
 - a) One
 - b) Two
 - c) Three
 - d) Four
- **47.** Transistor is a device which has ______ terminals.
 - a) One
 - b) Two
 - c) Three
 - d) Four
- **48.** The Boolean expression X = A + B represents the logic operation of
 - a) NAND gate
 - b) NOR gate
 - c) OR gate
 - d) NOT gate
- **49.** The open loop gain of op amplifier is
 - a) Zero
 - b) High
 - c) Very high
 - d) Low
- **50.** The width of depletion region of a diode
 - a) Increases under forward bias
 - b) Is independent of applied voltage
 - c) Increases under reverse bias
 - d) None of these
- 51. A LED emits lights only
 - a) Forward biased
 - b) Reverse Biased
 - c) Un biased
 - d) None of these

F Sc (2nd year) Physics

- 52. NAND gate is a combination
 - a) AND gate and NOT gate
 - b) AND gate and OR gate
 - c) OR gate and NOT gate
 - d) NOT gate and NOT gate
- 53. The reverse or leakage current of the diode is of the order of
 - a) Microampere
 - b) Milli-ampere
 - c) Both
 - d) None of these
- 54. Temperature, pressure etc are converted into electronic informations by devices called
 - a) LEDs
 - b) Sensors
 - c) Vacuum tubes
 - d) None
- 55. Base of the transistor is very thin of the order of
 - a) $10^{-2}m$
 - b) 10⁻⁴*m*
 - c) $10^{-6}m$
 - d) $10^{-8}m$
- 56. How many diodes are used for the full wave bridge rectifier circuit is
 - a) Two
 - b) Three
 - c) Four
 - d) None of these
- 57. The electronic circuits which implement the various logic operations are known as
 - a) Digital gates
 - b) Logic gate
 - c) Voltage operated gate
 - d) All of them
- **58.** In a half-wave rectifier the diode conducts during
 - a) Both halves of the input cycle
 - b) A portion of the positive half of the input cycle
 - c) A portion of the negative half of the input cycle
 - d) One half of the input cycle
- **59.** The output of a two inputs OR gate is 0 only when its
 - a) Both inputs are 0
 - b) Either input is 1
 - c) Both inputs are 1
 - d) Either input is zero

a)
$$\frac{V_{out}}{V_{in}} = \beta \frac{R_c}{R_{ie}}$$

b) $\frac{V_{out}}{V_{in}} = \beta$
c) $\frac{V_{out}}{V_{in}} = \beta \frac{R_{ic}}{R_c}$
d) $\frac{V_{out}}{V_{in}} = \beta \frac{R_{ie}}{R_{ie}}$

- 61. The resistance between (+) and (-) of ideal Op-Amp is
 - 🔍 a) High
 - b) Low
 - c) Infinity
 - d) Moderate

Key Chapter # 18							
Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.		
1	с	22	d	43	d		
2	а	23	b	44	а		
3	d	24	d	45	с		
4	d	25	с	46	b		
5	b	26	а	47	с		
6	а	27	b	48	с		
7	а	28	с	49	с		
8	с	29	с	50	с		
9	с	30	с	51	а		
10	с	31	b	52	а		
11	d	32	а	53	а		
12	b	33	а	54	b		
13	d	34	с	55	c		
14	а	35	b	56	c		
15	с	36	с	57	b		
16	d	37	b	58	d		
17	b	38	d	59	а		
18	d	39		60	а		
19	b	40	b	61	a		
20	c	41	с				
21	d	42	b				

CHAPTER # 19. DAWN OF MODERN PHYSICS

- 1. The Einstein mass-energy relationship is
 - a) E = mc
 - b) $E = mc^{3}$
 - c) $E = mc^2$
 - d) $E = m^2 c^2$
- 2. When an electron combines with a positron, we get
 - a) One photon
 - b) Two photons
 - c) Three photons
 - d) Four photons
- **3.** Production of X-rays can be regarded as the reverse phenomenon of
 - a) Pair production
 - •b) Photoelectric effect
 - c) Compton effect
 - d) Annihilation of matter
- 4. The radius of atom is the order of
 - a) $10^{10} m$
 - b) 10⁻¹⁰ m
 - c) $10^{-14} m$
 - d) $10^{14} m$
- 5. In 1905, the special theory of relativity was proposed by
 - a) Maxwell
 - b) De Broglie
 - c) Bohr
 - d) Einstein
- 6. Neutron was discovered in 1932 bya) Bohr
 - **b**) Chadwick
 - c) Dirac
 - d) Fermi
- 7. The rest mass of photon is
 - a) Infinity
 - b) Zero
 - c) hf
 - d) mc^2
- **8.** A maximum compton shift in the wavelength of scattered photon will be occur at
 - a) $\theta = 0^{\circ}$
 - b) $\theta = 45^{\circ}$
 - c) $\theta = 90^{\circ}$
 - d) $\theta = 180^{\circ}$
- **9.** The Davisson and Germer experiment indicates
 - a) Interference
 - b) Polarization
 - c) Electron diffraction
 - d) Refraction

- 10. A positron is a particle having
 - a) Mass equal to electron
 - b) Charge equal to electron
 - •c) Equal mass but opposite charge to electron
 - d) Mass equal to proton
- 11. In compton scattering, the compton shift $\Delta \lambda$ will be equal to compton wavelength if the scattering angle is
 - a) 0°
 - b) 45°
 - c) 60°
 - d) 90°
- 12. Unit of plank's constant is
 - a) volt
 - b) J s
 - c) $J s^{-1}$
 - d) *eV*
- **13.** Which one is most energetic?
 - a) γ rays
 - b) X rays
 - c) Ultraviolet rays
 - d) Visible light
- **14.** The total amount of energy radiated per unit orifice area of cavity radiator per unit time is directly proportional to
 - a) *T*
 - b) T^2
 - c) T^{3}
 - d) T⁴
- **15.** Plank's constant h has the same units as that of a) Linear momentum
 - b) Angular momentum
 - c) Torque
 - d) Power
- 16. Photoelectric effect was explained by
 - a) Hertz
 - b) Einstein
 - c) Rutherford
 - d) Bohr
- **17.** All motions are
 - a) Absolute
 - b) Uniform
 - c) Relative
 - d) Variable
- **18.** The rest mass energy of an electron in MeV is equal to
 - a) 0.511
 - b) 0.611
 - c) 0.902
 - d) 1.02

- **19.** An observer shoots parallel to a meter stick at very high speed (relativistic) and finds that the length of meter stick is _____
 - a) Greater than one meter
 - b) Less than one meter
 - c) One meter
 - d) None of these
- 20. Linear momentum of a photon is
 - a) Zero
 - b) hf/c^2
 - c) hf/c
 - d) c^2/hf
- **21.** Photon with energy greater than 1.02 MeV can interact with matter as
 - a) Photoelectric effect
 - b) Compton effect
 - c) Pair production
 - d) Pair annihilation
- **22.** Stopping potential for a metal surface in case of photo electric emission depends on
 - a) The threshold frequency for the metal surface
 - b) The intensity of incident light
 - c) The frequency of incident light and the work function for metal surface
 - d) None of these
- **23.** As the temperature of black body is raised, the wavelength corresponding to maximum intensity
 - a) Shifts towards longer wavelength
 - b) Shifts towards shorter wavelength
 - c) Remains the same
 - d) Shifts towards shorter as well as longer wavelength
- **24.** The name of photon for quantum of light was proposed by
 - a) Ampere
 - b) Planck's
 - c) Thomson
 - d) Einstein
- **25.** A photon is a ____
 - a) Unit of energy
 - b) Positively charged particle
 - •c) Packet of electromagnetic radiations
 - d) Unit of wavelength
- **26.** The light of suitable frequency falling on matel surface ejects electrons, this phenomenon is called
 - a) X-ray emission
 - b) Compton effect
 - c) Photoelectric effect
 - d) Nuclear fission

- **27.** The minimum energy needed for a photon to create an electron-positron pair is
 - a) 1.02 KeV
 - b) 0.51 KeV
 - c) 0.51 MeV
 - d) 1.02 MeV
- **28.** Davisson and Germer indicates
 - _____ in their experiment
 - a) Electron refraction
 - b) Electron polarization
 - c) Electron reflection
 - •d) Electron diffraction
- **29.** In Davison Germer experiment, the diffracted proton from crystal shows
 - a) Particle property
 - b) Wave property
 - c) Light property
 - •d) Quantum property
- **30.** In electron microscope, electric and magnetic field are used as _____
 - a) Electromagnetic gun
 - b) Source of electromagnetic waves
 - c) Deflected charged particle
 - d) Converging source of electrons
- **31.** The uncertainty in momentum and position is due to its ______
 - a) Property of matter and radiation
 - b) Two dimensional motions
 - c) Emotion of certain wave length
 - •d) Very high velocity
- **32.** The energy radiated is directly proportional to fourth power of Kelvin's temperature is _____
 - •a) Karl-wein's laws
 - b) Raleigh jeans law
 - c) Stephens law
 - d) Planck's
- 33. The anti-particle of electron is
 - a) Proton
 - b) Position
 - •c) Meson
 - d) Neutron
- **34.** The reverse process of pair-production is
 - a) Annihilation
 - b) Materialization
 - c) Fission
 - d) Fusion
- **35.** The decrease in length with speed was explained by
 - •a) Einstein
 - b) Lorentz
 - c) Bohr
 - d) None

- **36.** All the motion in this universe are
 - a) Absolute
 - b) Uniform
 - c) Variable
 - d) Relative
- 37. Pair production cannot possible in
 - a) Air
 - Water b)
 - Glass c)
 - •d) Vacuum
- **38.** The minimum energy required for pair production is
 - a) 10.2 Mev
 - b) 1.02 Mev
 - c) 102 Mev
 - d) None

39. The relation
$$\lambda_{Max}T = Contt.$$
 is

- Wein's Law a)
- Plank's Law • b)
- c) Stephen Law
- d) None

40. A quantity
$$\sqrt{1 - \frac{v^2}{c^2}}$$
 is always

- a) Greater than one
- b) Less than one
- c) Equal to one
- d) None of these
- 41. Who gave the idea of matter wave?
 - a) De-Broglie
 - b) Planck
 - c) Einstein
 - d) Huygen
- 42. The Stefen-Boltzmann's constant has the value
 - a) $5.67 \times 10^{-5} \text{Wm}^{-2} \text{K}^{-4}$
 - b) $5.67 \times 10^{-6} \text{Wm}^{-1} \text{K}^{-4}$
 - c) $5.67 \times 10^{-6} Wm^{-2} K^{-4}$
 - d) $5.67 \times 10^{-8} \text{Wm}^{-2} \text{K}^{-4}$
- **43.** The energy of photon of radio waves is only about
 - a) 10⁻⁶eV
 - b) $10^{-4} eV$
 - c) 10^{-10} eV
 - d) $10^{-12} eV$
- 44. The idea of quantization of energy was proposed by
 - a) Einstein
 - b) Max Planck
 - c) Compton
 - d) None of these

- **45.** Application of photoelectric effect is
 - a) Photo diode
 - b) Photo transistor
 - c) Photocell
 - d) None of these
- 46. In Compton effect, the law/laws are conserved a) Energy
 - Momentum b)
 - c) Both
 - d) None of these
- 47. The equations of pair production is

 - a) $hf = 2m_oc^2 KE(e^-) + K.E(e^+)$ b) $hf = 2m_oc^2 + KE(e^-) + K.E(e^+)$ c) $hf = 2m_o^2c^2 + KE(e^-) + K.E(e^+)$ d) $hf = 2m_o^2c + KE(e^-) + K.E(e^+)$
- 48. Which of the following has the same dimension as h/m_oc?
 - a) Length
 - b) Time
 - c) Mass
 - d) None
- 49. Photon 'A' has twice the energy of photon 'B'. What is the ratio of the momentum of 'A' to that of 'B'?
 - a) 4:1
 - b) 2:1
 - c) 1:2
 - d) None
- 50. Electron is an antiparticle of
 - a) Proton
 - **b**) Photon
 - c) Positron
 - d) Deuteron

Key Chapter # 19

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
1	с	18	а	35	а
2	b	19	b	36	d
3	b	20	с	37	d
4	b	21	с	38	b
5	d	22	а	39	а
6	b	23	b	40	b
7	b	24	d	41	а
8	d	25	с	42	d
9	с	26	с	43	с
10	с	27	d	44	b
11	d	28	d	45	с
12	b	29	b	46	с
13	а	30	d	47	b
14	d	31	а	48	а
15	b	32	с	49	b
16	b	33	b	50	с
17	с	34	a		

3

CHAPTER # 20: ATOMIC SPECTRA

- 1. Which is an example of continuous spectra?
 - a) Black body radiation
 - b) Molecular spectra
 - c) Atomic spectra
 - d) None of these
- 2. Line spectra is an example of
 - a) Atomic
 - b) Molecular
 - c) Black body radiation
 - d) None of these
- **3.** The unit of Rydberg's constant R_H is:
 - a) *m*⁻²
 - b) m^{-1}
 - c) *m*¹
 - d) m^2
- 4. In a meta-stable state an can reside for about: a) $10^{-8}s$
 - b) 10⁻¹⁰s
 - c) $10^{-9}s$
 - d) $10^{-3}s$
- 5. Which of the following series of H-spectrum lies in ultraviolet region:
- a) Lyman series
 - b) Balmer series
 - c) Paschen series
 - d) Bracket series
- 6. The reverse process of photoelectric effect is:
 - a) Compton effect
 - b) X-rays production
 - c) Pair production
 - d) Pair annihilation
- 7. Helium-Neon laser discharge tube contains Neon equal to:
 - a) 25%
 - b) 40%
 - c) 15%
 - d) 82%
- 8. The value of Rydberg constant is:
 - a) $1.0974 \times 10^7 m^{-1}$
 - b) $1.0794 \times 10^7 m^{-1}$
 - c) $1.0974 \times 10^9 m^{-1}$ d) $1.974 \times 10^7 m^{-1}$

9. The relation between Rhdberg constant R_H and ground state energy E_0 is given by:

a)
$$R_H = \frac{E_0}{hc}$$

b) $R_H = \frac{hc}{E_0}$
c) $E_0 = \frac{R_H}{E_0}$

- c) $E_0 = \frac{\pi}{hc}$ d) $R_H = E_0 hc$
- **10.** The radius of 3^{rd} Bohr orbit in H-atom is greater than the radius of 1st orbit by the factor
 - a) 2
 - b) 3
 - c) 4
 - d) 9
- 11. The orbital angular momentum in the allowed stationary orbits of H-atom is given by:
 - 2π a)
 - nh nh b)
 - 2π $\overline{2h}$ c)
 - nπ
 - d)
- **12.** If one or more electrons are completely removed from an atom then the atom is said to be:
 - a) Excited
 - b) Polarized
 - c) Stablized
 - d) Ionized
- 13. The quantized radius of first bohr orbit of Hatom is:
 - a) 0.053 nm
 - b) 0.0053 nm
 - c) 0.00053 nm
 - d) 53 nm
- 14. When an electron absorbs energy, it jumps to:
 - a) Lower energy state
 - b) Higher energy state
 - c) Ground energy state
 - d) Remains in the same state
- 15. LASER light has the property of:
 - **a**) Coherent waves
 - b) Non-coherent waves
 - c) Sound waves
 - d) Water waves

1

- a) 10^{-10} s
- **b**) 10^{-8} s
 - c) 10^{-6} s
 - d) 10^{-9} s
- 17. X-rays are _____
 - a) Unknown nature
 - b) High energy electrons
 - c) High energy photon
 - d) Radioisotopes
- 18. Total number of series in hydrogen spectrum
 - is
 - a) Three
 - b) Four
 - c) Five
 - d) Six
- 19. The radiations emitted from hydrogen filled discharge tube show _____
 - a) Bound spectrum
- b) Line spectrum
 - c) Continuous spectrum
 - d) Absorption spectrum
- 20. If the ionization energy of H-atom is 13.6 eV, its ionization potential will be:
- **a**) 13.6 V
 - b) 136.0 V
 - c) 3.4 V
 - d) None of these
- 21. Radiation with wavelength longer than red light
 - a) Ultraviolet rays
 - b) X-rays
 - c) Infrared radiation
 - d) Visible radiations
- 22. Bracket series is obtained when all transition of electron terminate on
- a) 4th orbit
 b) 5th orbit
 c) 3rd orbit

 - d) 2^{nd} orbit
- **23.** X rays are similar in nature to _____
 - a) Cathode rays
 - b) Positive rays
- c) γ rays
 - d) α rays

MCQ's Chapter # 20

- 24. The characteristic X-rays spectrum is due to
 - a) The illumination of the target metal by ultraviolet radiation
 - b) The bombardment of the target by proton
 - The bombardment of target by electron **_**C)
 - d) The absorption of Y-radiation by the target metal
- **25.** Wave like characteristic of electron is demonstrated by
 - a) Line spectrum of atoms
 - b) Production of X-rays
 - c) Diffraction by crystalline solids
 - d) Photo electric effect
- 26. In laser production, the state in which more atoms are in the upper state then in the lower one is called
 - a) Metal stable state
 - b) Normal state
 - C) Inverted population
 - d) All the above
- 27. Reflecting mirrors in laser is used to _____
 - a) Further stimulation
 - b) Lasing more
 - c) For production more energetic laser
 - d) All the above
- **28.** The velocity of laser light is _____
 - a) Less than ordinary light
 - b) More than ordinary light
 - c) Equal to ordinary light
 - d) Different for different colors or frequency
- **29.** X rays is also known as
 - a) Photon
 - b) $\gamma rays$
 - c) Breaking radiation
 - d) none
- **30.** Which one of the following is more coherent
 - a) X rays
 - b) Normal light
 - c) Laser
 - d) γ rays
- **31.** Sunlight spectrum is
 - a) Discrete
 - b) Line spectrum
 - c) Continuous spectrum
 - d) None

F Sc (2nd year) Physics

- **32.** Optical pumping exist in
 - a) X rays
 - b) Laser
 - c) Spectrum
 - d) None
- 33. The total energy of electron in an orbit around the nucleus is
 - a) + ive
 - **b**) ive
 - c) Zero
 - d) None
- **34.** According to Bohr's theory the outer orbit electron has _____ energy than inner orbits.
 - a) Greater
 - b) Smaller
 - c) Equal
 - d) None of these
- **35.** X rays was discovered by
 - a) Bacquerel
 - b) Mari curie
 - c) Roentgen
 - d) Lane
- **36.** The value of Plank's constant is
- (a) 6.63×10^{-34} J.sec b) 6.63×10^{-34} J/sec c) 6.63×10^{-34} sec/J

 - d) None
- **37.** Laser is a device which can produce Intense beam of light Coherent light Monochoromatic light All
- **38.** When magnetic field is applied in the path X rays, they will be moving in
 - a) Straight line
 - b) Circular path
 - c) Parabolic path
 - d) None
- **39.** The quantized energy of first Bohr orbit of hydrogen atom is
 - a) 13.04 eV
 - b) 13.6 eV
 - c) 13.6 eV
 - d) 13.5 eV

MCQ's Chapter # 20

- **40.** In LASER principle, a photon produce another photon by the process of
 - a) Excitation
 - b) De-excite
 - c) Ionization
 - d) None of these
- **41.** Characteristic X rays are the X rays which have
 - a) High energy photons
 - b) Specific wavelengths
 - c) Specific frequencies
- d) All of these
- **42.** In Laser a Meta-stable state is
 - a) An excite state
 - b) In which an electron is usually stable
- c) In which an electron reside 10^{-3} sec
 - d) None of these
- **43.** The Meta-stable state of Helium and Neon is
 - a) Different
 - b) Identical
 - c) Nearly identical
 - d) None of these
- 44. Emission of electrons by metal on heating is called
 - a) Secondary emission
 - b) Field effect
 - c) Photoelectric emission

....

- d) Thermionic emission
- 45. The numerical value of ground state energy for H-atom in electron volt is:
 - a) -10
 - b) 13.6
 - c) 10
- d) -13.6

Key Unapter # 20							
Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.		
1	а	16	b	31	с		
2	а	17	с	32	b		
3	b	18	с	33	b		
4	d	19	b	34	а		
5	а	20	а	35	с		
6	b	21	с	36	а		
7	с	22	а	37	d		
8	а	23	с	38	а		
9	а	24	с	39	b & c		
10	d	25	с	40			
11	b	26	с	41	d		
12	d	27	d	42	с		
13	a	28	с	43	c		
14	b	29	с	44	d		
15	а	30	с	45	d		

~ . . .

CHAPTER 21: NUCLEAR PHYSICS

- 1. The energy released by fusion of two deuterons into a He nucleus is about
 - a) 24 MeV
 - b) 200 MeV
 - c) 1.02 MeV
 - d) 7.7 MeV
- 2. Dr. Abdus Salam unified electromagnetic force and _____
 - a) Weak nuclear force
 - b) Strong nuclear force
 - c) Magnetic force
 - d) Gravitational force
- 3. Which of the following have no charge
 - a) $\alpha rays$
 - b) $\beta rays$
 - c) $\gamma rays$
 - d) cathode rays
- 4. In Wilson cloud chamber, we use:
 - a) Alcohol vapours
 - b) Neon gas
 - c) Bromine gas
 - d) Water vapours
- 5. A high potential difference of ______ is used in GM counter
 - **a**) 400 volts
 - b) 1000 volts
 - c) 5000 volts
 - d) 4000 volts
- 6. One Curie is equal to:
 - a) $3.70 \times 10^{-10} Bq$
 - b) $3.70 \times 10^{10} Bq$
 - c) 1 *Bq*
 - d) $10^3 Bq$
- 7. The most useful tracer isotop for the treatment of thyroid gland is:
 - a) Cobalt-60
 - b) Carbon-14
 - c) Iodine-131
 - d) Strontium-90
- **8.** The chemical properties of any element depend on its:
 - a) Number of isotopes
 - b) Number of isobars
 - c) Atomic number
 - d) Mass number

- **9.** The number of protons in any atom are always equal to the number of:
 - a) Electrons
 - b) Neutrons
 - c) Positrons
 - d) Mesons
- 10. Types of quarks are:
 - a) 4
 - **b**) 6
 - c) 8
 - d) 10
- **11.** β –particles in Wilson cloud chamber have:
 - a) Zigzag or erratic path
 - b) Curved path
 - c) Circular path
 - d) Elliptical path
- **12.** Nuclear fission chain reaction is controlled by using:
 - a) Steel rods
 - b) Graphite rods
 - c) Cadimum rods
 - d) Platinum rods
- 13. Extremely penetrating particles are
 - a) Neutrons
 - b) α -particles
 - c) β –particles
 - d) γ –particles
- 14. The nuclear reaction taking place in sun is:
 - a) Fission
 - b) Fusion
 - c) Chain
 - d) Alpha decay
- **15.** An α –particle contains
 - a) 1 proton and 1 neutron
 - b) 2 protons and 2 neutrons
 - c) 3 protons and 3 neutrons
 - d) 4 protons and 4 neutrons
- **16.** Which of the following belong to hadrons group:
 - a) Protons
 - b) Electrons
 - c) Muons
 - d) Neutrinos

17. Number of isotopes of Helium is:

- a) 2
- b) 3
- c) 4
- d) 5

MCQ's Chapter # 21

- **18.** One joule of energy absorbed in a body per kilogram is equal to:
 - a) 1 rad
 - b) One rem
 - c) One gray
 - d) One sievert
- **19.** In nucleus of uranium U_{92}^{235} , the number of neutrons will be _____
 - a) 92
 - b) 235
 - **c**) 143
 - d) Different for different isotopes
- 20. One a.m.u is equal to _____
 - a) $1.66 \times 10^{-27} \text{ kg}$
 - b) $1.66 \times 10^{-25} \text{ kg}$
 - c) $1.66 \times 10^{-20} \text{ kg}$
 - d) All of above
- **21.** According to which one of following law, the density of nucleus is uniform ?
 - a) J.J. Thomson
 - b) Rutherford's Model
 - c) Bohr's Model
 - d) All of above laws
- 22. For chain reaction to buildup, the size of the radio active target should be ______a) 90
 - b) Greater than the critical size
 - c) Less than the critical size
 - d) Equal to critical size
- **23.** After two half lives, the number of decayed nuclei of an element are:
 - a) N
 - b) $\frac{N}{2}$
 - c) $\frac{Z}{N}$
 - $\frac{4}{3N}$
 - d) $\frac{3\pi}{4}$
- 24. The examples of antimatter are:
 - a) Antiproton
 - b) Antineutron
 - c) Positron
 - d) All of above
- 25. Neutron and proton are commonly known as
 - a) Nucleons
 - b) Meson
 - c) Boson
 - d) Quartz

- **26.** Half life of Radium is 1590 years. In how many years shall the earth loss all his radium due to radioactive decay?
 - a) 1590×10^6 years
 - b) 1590×10^{12} years
 - c) 1590×10^{25} years
 - d) Never
- **27.** Which one of the following radiation possesses maximum penetrating power?
 - a) α rays
 - b) β rays
 - c) γ rays
 - d) All have equal penetrating power
- **28.** Energy liberated when one atom of U-235 undergoes fission reaction is _____
 - a) 200 Mev
 - b) 40 Mev
 - c) 30 Mev
 - d) 20 Mev
- 29. Nuclear force exist between
 - a) Proton proton
 - b) Proton Neutron
 - c) Neutron Neutron
 - d) All of the above
- **30.** Tick the correct statement
 - a) Moderator slow down the neutron
 - b) Moderator bring the neutrons to rest
 - c) Moderator absorb the neutron
 - d) Moderator reflect the neutron
- **31.** Radioactive decay obeys which one of the following data?
 - a) $N = N_o e^{-\lambda t}$
 - b) $N = N_0 e^{xt}$
 - c) $N = N_0 e^{-xt/2}$
 - d) $No = N(Ie^{xt})$
- **32.** Which one of the following possesses maximum velocity?
 - a) α rays
 - b) β rays
 - c) γ rays
 - d) All of the above have same speed
- 33. Charge on an electron was determine by
 - a) Ampere
 - b) Maxwell
 - c) Milliken
 - d) Thomson
- **34.** Charge on neutron is _____
 - a) $+1.6 \times 10^{-19} c$
 - b) $-1.6 \times 10^{-19} c$
 - c) Zero
 - d) No definite charge

- 35. A particle having the mass of an electron and the charge of a proton is called
 - a) Antiproton
 - b) Positron
 - c) Gamma rays
 - d) Photon
- **36.** Mass of neutron is _
 - a) $1.67 \times 10^{-13} \text{ Kg}$ b) $1.67 \times 10^{-27} \text{ Kg}$

 - c) $9.1 \times 10^{-31} \text{ Kg}$
 - d) $1.67 \times 10^{-19} \text{ Kg}$
- **37.** Nuclei having the same mass number but different atomic number are
 - a) Isotopes
 - b) Isobars
 - c) Isotones
 - d) Isomers

38. A mass spectrograph sorts out

- a) Molecules
- b) Ions
- c) Elements
- **d**) Isotopes
- **39.** Sum of the masses of constituent nucleons as compared to the mass of the resultant nucleus is
 - a) Smaller
 - b) Greater
 - c) Same
 - d) Some times smaller some times greater
- **40.** An α particle is emitted from ₈₈Ra²²⁶, what is the mass and atomic number of the daughter nucleus?

	Mass Number	Atomic Number
a)	224	84
b)	220	80
c)	222	86
d)	226	87

- 41. The unit of Radioactivity "Curie" is equal to

 - a) 3.74 x 10⁹ disintegration per sec
 b) 3.70 x 10¹⁰ disintegration per sec
 c) 3.55 x 10¹⁰ disintegration per sec
 d) 3.60 x 10¹⁰ disintegration per sec
- 42. In liquid metal fast breeder reactor, the type of uranium used is _____
 - a) ₉₂U²³⁵
 - b) ${}_{92}U^{238}$
 - c) ${}_{92}U^{234}$
 - d) ₉₂U²³⁹

- 43. Radioactive materials can be identified by measuring their
 - a) Hardness
 - b) Density
 - c) Mass
 - d) Half life
- 44. If one or more of the neutrons emitted during fission can be used to build up further fission then the reaction is self sustained and is known as
 - a) Fission reaction
 - b) Fusion reaction
 - c) Chain reaction
 - d) Chemical reaction
- **45.** Pair production takes place in the vicinity of heavy nucleus so that _
 - a) Net energy is conserved
 - b) Net charge is conserved
 - c) Net momentum is conserved
 - d) All of the above
- **46.** During an encounter with an atom α particle knocks out _____
 - a) Protons
 - b) Electrons
 - c) Neutrons
 - d) Nothing
- **47.** Which one of the following radiations are suitable for the treatment of an infection in the interior body?
 - a) α rays
 - b) β rays
 - c) γ rays
 - **d**) X rays
- **48.** Various types of cancer are treated by
 - a) Cobalt 60
 - b) Strontium 90
 - c) Carbon 14
 - d) Nickel 63
- **49.** Sterilizations of surgical instrument, medical supplies and bandages can be done by exposing them to a beam of _____
 - a) α rays
 - b) β rays
 - c) γ- rays
 - d) 'b' & 'c' have equal antiseptic properties
- **50.** Charge on α particle is _____
 - a) +1
 - **b**) +2
 - c) -2
 - d) -1

F Sc (2nd year) Physics

- 51. B-particle ionizes an atom
 - a) Through direct collision
 - b) Through electrostatic attraction
 - **•**c) Through electrostatic repulsion
 - d) All of above
- **52.** T.V. sets and microwave oven emit ____
 - a) X rays
 - b) α rays
 - c) β rays
 - d) γ rays
- **53.** A β particle in a single encounter ____
- a) Loses a small fraction of its energy
 - b) Loses most of its energy
 - c) Loses no energy at all
 - d) Loses energy at all
- 54. Strontium -90 is used as _____
 - a) β particle source
 - b) α particle source
 - c) γ particle source
 - d) Neutrons source
- **55.** The penetration power of β particle as compared to a-particle is _____
 - a) 10 times more
 - b) 100 times more
 - c) 100 times less
 - d) 10 times less
- **56.** Geiger counter is suitable for _____
 - a) Fast counting
 - b) Extremely fast counting
 - c) Slow counting
 - d) All situations
- **57.** An α particle can produce fluorescence in
 - a) ZnS
 - b) Barium Palatino cyanide
 - c) Calcium tunzstate
 - d) All of above
- **58.** Pair production cannot take place in vacuum as ______ is not conserved
 - a) Energy
 - a) Energyb) Charge
 - c) Mass
 - d) Momentum
- **59.** Average distance covered by α particle in air before its ionizing power ceases is called
 - its _____ a) Trajectory
 - b) Range
 - b) Range
 - c) Firing leveld) Limit
 - d) Limit

- **60.** γ rays are electromagnetic waves like
 - a) Normal light
 - b) Heat waves
 - c) Micro waves
 - d) X rays
- **61.** β –particle ionizes an atom _____
 - a) Due to electrostatic force of attraction
 - b) Due to electrostatic force of repulsion
 - c) Due to direct collision
 - d) Due to gravitational force
- **62.** β –particles possess greater penetration power then that of a-particle due to its
 - a) Smaller ionization power
 - b) Energy is not conserved
 - c) Neither greater nor smaller ionization power
 - d) Same ionization power
- 63. Pair production can take places only with
 - a) X-rays
 - b) γ rays
 - c) UV-rays
 - d) IR-rays
- **64.** A device for producing high velocity nuclei is
 - a) Cloud chamber
 - b) Linear acceleration
 - c) A mass spectrograph
 - d) Wilson cloud
- **65.** Which one of the following will be better shield against γ rays?
 - a) Ordinary water
 - b) Heavy water
 - ●c) Lead
 - d) Aluminum
- **66.** The maximum safe limit does for persons working in nuclear power station are
 - a) 1 rem per week
 - b) 5 rem per week
 - c) 4 rem per week
 - d) 3 rem per week
- **67.** Radiations are used for the treatment of skin of a patient is ______
 - a) α rays
 - b) β rays
 - c) X rays
 - d) γ rays

- **68.** Strong nuclear force
 - a) Increase with magnitude of increasing charge
 - b) Decreases with magnitude of increasing charge
 - c) Is independent of charge
 - d) None
- 69. Complete the reaction

$$_{Z}X^{A} \rightarrow X_{T+1} + \beta^{\circ} + \dots + Q$$

- a) Neutrino
- **b**) Antineutrino
 - c) $\alpha_{-\text{particle}}$
 - d) None
- **70.** The half of uranium -238 is
 - a) 1.67×10^{8} years
 - b) 3.3×10^9 years
 - c) 4.5×10^8 years
 - d) 4.5×10^9 years
- **71.** The α particle ionizes the particles in its way and adopt the path which is
 - a) Curved
 - b) Straight
 - c) Zig Zag
 - d) None of these
- **72.** Which of the following is similar to electron:
 - a) α rays
 - b) β rays
 - c) γ rays
 - d) Photons
- 73. The rate of decay of a radioactive substance:a) Remains constant with time
 - b) Increase with time
 - c) Decrease with time
 - d) May increase or decrease with time
- **74.** γ rays are absorbed by a sheet of
 - a) 1 to 5 mm of lead
 - b) 1 to 10 mm of lead
 - c) 5 to 10 mm of lead
 - d) None of these
- **75.** Tracks obtained by β particles in Wilson Cloud Chamber is
 - a) Strong Continuous
 - b) Discontinuous, not straight thin
 - c) Weak and no definite tracks
 - d) None of these

- **76.** The dead time of Geiger Muller counter is of the order of
 - a) Micro second
 - b) Miilli second
 - c) More than millisecond
 - d) None of these
- **77.** The breakage of U_{92}^{235} produces the fragments
 - as
 - a) Kr and Ba
 - b) Sn and Mo
 - c) Xe and Sr
 - d) All of them
- **78.** The fuel / fuels used in the reactor are nowadays
 - a) Plutonium 239
 - b) Uranium 233
 - c) Uranium 235
 - d) All of these
- **79.** The temperature of the core of the reactor rises to about
 - a) 1000°C
 - b) 1100°C
 - c) $1200^{\circ}C$
 - d) 1300°C
- 80. Plutonium can be fissioned by
 - a) Slow neutron
 - b) Fast neutron
 - c) Very slow neutron
 - d) None of these
- **81.** Ultraviolet radiation cuase
 - a) Sum burn
 - b) Blindness
 - c) Skin Cancer
 - d) All of them
- 82. Neutrons are particularly more damaging to
 - a) Legs
 - b) Heart
 - c) Eyes
 - d) Brain
- **83.** Radio isotopes can be made easily by bombardment with
 - a) Electrons
 - b) Protons
 - c) Neutrons
 - d) None of these
- 84. Subatomic particles are divided into
 - a) Photons
 - b) Leptons
 - c) Hadrons
 - d) All of these

- a) 931 MeV
 - b) 9.31 MeV
 - c) 93.1 MeV
 - d) 0.931 MeV
- **86.** Cobalt -60 emits γ –rays of energy
 - a) 117 MeV
 - b) 11.7 MeV
 - •c) 1.17 MeV
 - d) 1.17 KeV

87. Which of the following statements is correct?

- a) Moderators slow down the neutrons
 - b) Moderators bring the neutrons to rest
 - c) Moderators absorbs the neutrons
 - d) Moderators reflect the neutrons
- **88.** The half life of radioactive element is

• a)
$$T_{1/2} = \frac{0.693}{2}$$

b)
$$T_{1/2}^{/2} = 1.43 \lambda$$

c)
$$T_{1/2}^{/2} = 0.693 \lambda$$

d) None of these

89. Hadrons are the particle included

- a) Protons
- b) Neutrons
- c) Mesons
- •d) All of these
- 90. Lepton's particles which experience no strong nuclear force are
 - a) Electrons
 - b) Muons
 - c) Neutrinos
 - •d) All of these
- 91. The charges on the quarks are
 - a) One unit
 - b) Half unit
 - c) Fraction
 - d) None of these
- **92.** Meson is made from
 - a) A pair of quarks
 - b) A pair of anti quarks
 - •c) A pair of quarks and anti quarks
 - d) None of these
- **93.** Fission nuclear reaction leads to stability.
 - a) Lesser
 - b) Greater
 - c) Medium
 - d) None

- 94. If a radioactive isotope of silver have a half life of about 7.5 days. After 15 days the remaining isotope of its original is
 - •a) 25%
 - b) 50%
 - c) 7.5%
 - d) 15%
- **95.** A nuclide ${}_{86}R^{220}$ decays to a new nuclide by two α -emissions, the nuclide S is
 - $_{84}S^{\,212}$
 - a)
 - b) $^{82}S^{212}$
 - $_{80}S^{\,220}$ c)
 - d) None

Kev Chapter # 21

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
1	а	33	с	65	с
2	а	34	с	66	b
3	с	35	b	67	b
4	а	36	b	68	с
5	а	37	а	69	b
6	b	38	d	70	d
7	с	39	b	71	b
8	с	40	с	72	b
9	а	41	b	73	с
10	b	42	b	74	b
11	а	43	d	75	b
12	с	44	с	76	b
13	d	45	d	77	d
14	b	46	b	78	d
15	b	47	d	79	а
16	а	48	b	80	b
17	а	49	d	81	d
18	с	50	b	82	
19	с	51	с	83	с
20	а	52	а	84	d
21	а	53	а	85	а
22	b	54	а	86	с
23	d	55	b	87	а
24	d	56	с	88	а
25		57	d	89	d
26	d	58	d	90	d
27	с	59	b	91	с
28	а	60	d	92	c
29	d	61	b	93	b
30	а	62	а	94	а
31	а	63	b	95	b
32	с	64	b		

MCQ's Chapter # 21